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Abstract 

CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats‑associated protein 9) shows the opportunity 
to treat a diverse array of untreated various genetic and complicated disorders. Therapeutic genome editing pro‑
cesses that target disease‑causing genes or mutant genes have been greatly accelerated in recent years as a conse‑
quence of improvements in sequence‑specific nuclease technology. However, the therapeutic promise of genome 
editing has yet to be explored entirely, many challenges persist that increase the risk of further mutations. Here, we 
highlighted the main challenges facing CRISPR/Cas9‑based treatments and proposed strategies to overcome these 
limitations, for further enhancing this revolutionary novel therapeutics to improve long‑term treatment outcome 
human health.
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Background
Cancer is one of the leading causes of disease-related 
death, increasing worldwide incidence [1]. At the same 
time, advancements have been achieved in the prevention 
and therapeutic approaches, resulting in longer lifetimes 
or even cures for certain patients with cancer. Unfortu-
nately, chemotherapy and radiotherapy, the two gold 
stones in cancer treatment, are also painful for patients 
and cause severe side effects [2]. Therefore, developing 
innovative anti-cancer therapies with less side effects 
needs a comprehensive understanding of cancer biology. 
The most recent advancements in sequencing technology 
have made it possible to study the cancer genome more 
effectively and at a lower cost than ever before. The use 

of an integrated strategy that incorporates genomic and 
transcriptomic advancements can provide a comprehen-
sive view of an individual’s genome. Additionally, this 
method is used to make valuable decisions relating to 
patient therapeutic options [3].

Different genomic engineering tools have been per-
formed in cancer therapy such as ZFNs and TALENs 
by targeting DNA domain-binding proteins. Still, their 
efficacy was limited due to the inability to target epi-
genetic modification that arises in tumorigenesis [4]. 
Recently, a more flexible genome editing technique, 
CRISPRs linked with HNH domain protein Cas9, 
promises efficient, long-term safety cancer treatment 
[5]. The CRISPR/Cas9 system, unlike previous genome 
editing methods that used protein-DNA interactions to 
mediate sequence recognition, uses an RNA molecule 
to mediate binding. CRISPR loci, which are made up 
of alternating repeat-spacer units, and CRISPR-asso-
ciated (Cas) proteins, are derived from a prokaryotic 
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host defense system that protects against viral genomes 
and plasmids [6]. Based on the method of recognition 
and cleavage, CRISPR/Cas systems are divided into two 
classes, which are further divided into six types and 
various subtypes [7]. Class 1 systems cleave with pro-
tein complexes, whereas Class 2 systems only cleave 
with one protein, creating an opportunity for genome 
engineering [8]. However, certain targeting limitations 
apply to all Class 2 systems (types II, V, and VI). For 
example, a protospacer flanking sequence is recognized 
by Type VI systems, which use Cas13 to cleave RNA 
[9]. In addition, type II and Type V systems recognize 
the adjacent protospacer motif (PAM), a conserved 
2–5  bp sequence [10]. For example, the Cas12a/Cpf1 
protein uses a simple crRNA and recognizes a PAM 
directly before the protospacer, such as T-rich PAMs 
(TTTN) [11]. Conversely, type II Cas9 nuclease recog-
nizes PAM sequences downstream of the protospacer 
[12]. The most well-characterized and broadly applied 
CRISPR system is the type II CRISPR/Cas9 system.

Cas9 is an RNA-guided endonuclease that recognizes 
and cleaves target DNAs that have template strand pair-
ing to the guide RNA, and it requires RNA molecule 
known as the trans-activating crRNA (tracrRNA). Tracr-
RNA promotes crRNA binding and processing. Moreo-
ver, a linker can join the tracrRNA and crRNA into a 
single molecule known as the single guide RNA used in 
genome editing (sgRNA) (Fig. 1).

Cas9 is an RNA-guided endonuclease that recognizes 
and cleaves target DNA that have template strand pair-
ing to the guide RNA, which is composed of Crispr RNA 
(crRNA) and tracrRNA [13]. crRNA, which has a [17–20] 
nucleotide sequence that is complementary to the target 
DNA, and tracrRNA, which acts as a Cas nuclease bind-
ing scaffold [14].

The CRISPR/Cas9 system has been successfully applied 
to in vitro cancer research by inhibiting one or more 
oncogenic molecular pathways (Table 1). However, the in 
vivo use of the CRISPR/Cas9 system has faced many chal-
lenges such as the occurrence of off-targeting modifica-
tions, the possibility of causing autoimmune diseases, the 
identification of a proper delivery technique, and, lastly, 
ethical concerns. As a result, research scientists follow 
different procedures and investigate various bioinformat-
ics tools to prevent, or at least reduce, these obstacles to 
make the CRISPR/Cas9 system more suitable for treating 
cancer in the human body. This review summarizes some 
of the main limitations of using CRISPR/Cas9 in clinical 
trials and some of the strategies applied in previous stud-
ies to overcome these limitations. Hopefully, this study 
provides a comprehensive overview of the main road-
blocks to implementing this promising technique in vivo, 
helping future researchers focus their efforts on tackling 

them and making CRISPR come alive as a powerful strat-
egy to treat cancer.

Innovative advances in CRISPR/Cas9 gene‑editing 
technology
When Japanese scientists found several previously undis-
covered tandem repeats in the E. coli genome in 1987, 
they didn’t report the biological relevance of those find-
ings [15]. However, the role of these sequences remained 
unknown until they were termed Clustered Regularly 
Interspaced Short Palindromic Repeats (CRISPR) in 2002 
[16]. Then, in 2005, the CRISPR loci were shown to play 
a significant role in adaptive immunity by three different 
study teams [17–19]. In 2007, Barrangou and his team 
revealed that viral gene sequences integrated by bacteria 
might modify the bacterium’s resistance to phages [20]. 
Brouns et  al. in 2008 discovered that non-coding RNA 
produced from the CRISPR incorporating short frag-
ments might direct the CRISPR-associated (Cas) proteins 
to the target-specific portion of DNA, allowing it to per-
form a protective function [21]. Deltcheva et al. discov-
ered that trans-coding crRNA (tracrRNA) was related to 
the maturation and processing of pre-crRNA, and their 
research revealed new destinations for crRNA develop-
ment [22]. In vivo studies in 2012 showed that mature 
crRNA produced two unique RNA structures when base-
paired with tracrRNA, guiding CRISPR-associated pro-
tein Cas9 to create double-stranded (ds) DNA cleavage 
[23]. Subsequently, Cong and Mali teams made genome 
editing with the CRISPR/Cas9 system possible, who used 
two different type II Cas systems to make DNA cuts in 
cell cultures [24, 25]. Once the CRISPR/Cas9 technology 
was developed, many CRISPR/Cas9-based tools for gene 
editing at the DNA and RNA levels were created by 2020, 
with fast advancements in the technology since [26, 27] 
(Fig. 2).

Overview of CRISPR/Cas9‑based genome editing
CRISPR is a response of the bacterial and archaea 
immune system to protect themselves from virus infec-
tions [28]. Approximately half of the bacteria have a 
CRISPR/Cas system [29, 30] a defense mechanism that 
allows the bacterial cell to memorize, recognize and beat 
recurrently infecting agents [31]. In this system, short 
guide CRISPR RNAs (crRNA) interfere with invading 
nucleic acids in a sequence-specific manner. CRISPR/
Cas is composed of a genomic locus termed CRISPR that 
contains harsh repeating elements separated by unique 
sequences (spacers), which derive from Mobile genetic 
factors like phages, plasmids, or transposons. An AT-rich 
region is typically found at the beginning of Cas genes, 
which encode Cas proteins [32]. Nowadays, accord-
ing to the structure and function of the Cas protein, the 
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CRISPR/Cas systems can be divided into two classes 
(class I, class II), which are further categorized into six 
types (type I–VI) [33]. Class I consists of multiprotein 
complexes responsible for the cleavage of nucleic acid.

In contrast, in class II, only a single protein, Cas9, 
is used to read, identify and cleave the DNA target 
sequence [33]. In CRISPR technology, a single protein 
method is more effective than a multiprotein approach, 
hence the class II system is more often used, especially in 
research [10]. Figure 1 illustrates the details of the Type 
II CRISPR/Cas9 system. For instance, deactivated Cas9 
can be utilized to target the epigenome by inhibiting the 

enzymatic activity of HNH domains without causing 
sequence disruption [34]. The guide RNA is composed 
of two core parts; the first is required to bind the RNA 
to the Cas protein, and the second part, called a spacer, 
consists of about 20 nucleotides and is responsible for 
identifying and binding to the targeted site [35]. Further-
more, the PAM sequence is a short DNA sequence usu-
ally between 2 and 6 nucleotides that is also required to 
identify the exact target site on the DNA, and it is located 
three base pairs from the site where the DNA will be cut, 
and the mutation will be introduced [10] (Fig. 1).

Fig. 1 The stages of CRISPR/Cas adaptive immunity. The three phases of the CRISPR/Cas9 system are depicted schematically. When phage DNA 
is injected into a bacterial cell, the Cas1–Cas2 adaptation module proteins are activated, which remove spacer‑sized segments of phage DNA and 
channel them into the CRISPR array. The CRISPR array is transcribed, and the resulting pre‑crRNA is processed at repeat sequences to form crRNAs 
during CRISPR RNA biogenesis. The Cas protein effectors bind individual crRNAs. Effectors programmed by suitable crRNA attach to phage DNA 
with sequences matching a CRISPR spacer in the cell, and the resulting R‑loop complex is destroyed by Cas executor nuclease
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Anticancer application of CRISPR/Cas9 gene editing 
and clinical trials
Cancer initiation and spread are mediated by muta-
tions and dysregulation of a variety of genes [36] such 
as oncogenes, tumor suppressor genes, and stem cell-
associated genes, chemo-resistant genes and metabolic 
genes. Cancer treatment’s primary goal is to halt can-
cer cell growth and development by repairing muta-
tions and restoring dysregulated gene expression. Since 
its inception, the CRISPR/Cas9 gene-editing method 
has been widely used in cancer research, with prom-
ising results. Georgiadis et  al. recently demonstrated 
that fratricide-resistant T cells can be generated by 
removing and replacing the TCR/CD3 and CD7 with 
lentiviral-mediated production of CARs specific for the 
CD3 or CD7[37]. Table 1 lists some of the target genes, 
tumors, and studies that show the effectiveness of 
CRISPR/Cas9 in correcting these alterations. Based on 
promising pre-clinical results, the CRISPR/Cas9 system 
can be used in clinical settings to target cancer-causing 
genes (Fig.  3). The efficacy of CRISPR-based cancer 
therapeutics is now being investigated in a number of 
clinical trials (Table 2).

The programmed cell death-1 (PD-1) protein expres-
sion is being targeted by several of these clinical studies. 
For example, a monoclonal antibody against PD-1 called 
pembrolizumab exhibits anti-tumor activity in Non-Small 
Cell Lung Cancer (NSCLC), suppressing the immune sys-
tem’s ability to produce PD-1 and PD-L1 (programmed 
death-ligand 1), dramatically improves patients’ survival 
rate [38]. Because the FDA has approved PD-1 inhibitors 
for cancer immunotherapy, PD-1 is an intriguing target 
for immunotherapy. In addition, CRISPR/Cas9 has been 
used in patients to begin targeting PD-1 (NCT02793856). 

They used CRISPR/Cas9 to suppress PD-1 expression 
in metastatic cells from NSCLC patients. The cells were 
cultured and modified before being reintroduced into the 
patient [39].

PD-1 knockout-engineered immune cells to treat meta-
static NSCLC will be tested for safety in a dosages trial. 
Additional trials targeting PD-1 expression in T-cells are 
currently done in other types of cancer such as renal, 
bladder, and prostate cell malignancies [40]. Similarly, 
PD-1 deletion has been used in T-cells in phase II clini-
cal trials for esophagus cancer (NCT03081715). Fur-
thermore, the ability of CRISPR gene editing for cancer 
immunotherapy to persist for up to 9 months, suggests 
that immunogenicity is low under these settings and 
demonstrates the practicality of CRISPR gene editing 
for cancer immunotherapy [41]. Clinical experiments 
are also using CRISPR/Cas9 to create chimeric antigen 
receptor (CAR) T cells.

The first-in-human trial was conducted by scientists 
from the university of Pennsylvania applying CRISPR/
Cas9 genome-edited NY-ESO-1 TCR cells for cancer 
patients [42] including advanced multiple myeloma 
(MM) myxoid/round cell liposarcoma (MRCL), and 
synovial sarcoma (NCT03399448). They showed that 
T cells were proven to be safe, viable, and long-lasting 
[42]. Furthermore, using CRISPR to eliminate endog-
enous TCR and PD-1 might improve tumor rejection 
activity [40]. Additionally, the allogeneic CAR T-cells 
targeted to the CD19 antigen were produced by com-
bining the lentivirus-delivered CAR receptors and elec-
troporation-delivered CRISPR RNA to alter the natural 
TCR and B2M genes. For patients with leukemia, this 
strategy may help avoid the host’s immune system and 
hence avoid graft-versus-host-disease complications. 

Fig. 2 Timeline highlighting main events of identification, CRISPR development (structural‑functional relationships), applications, and CRISPR‑based 
gene editing and clinical trials
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Consequently, additional CRISPR clinical trials (phase 
III) used CRISPR-edited CAR T-cells with dual specific-
ity for CD19 and CD20/CD22, which can identify and 
destroy CD19-negative malignant cells by identification 
of CD20/CD22 (NCT03398967). This may have been 
a helpful adjunctive treatment for an extensive range 
of the population. In another work, Chen et  al. applied 
CRISPR/Cas13a to disrupt human papillomavirus16/18 
E6/E7 mRNAs using an emerging programmed CRISPR 
technology. They revealed that HPV 16/18 E6/E7 mRNA 
was successfully and selectively knocked down using a 
modified CRISPR/Cas13a system, causing growth sup-
pression and cell death in HPV 16 and 18 positive SiHa 
and HeLa cell lines, but not in the HPV -negative C33A 
cells [43]. An additional CRISPR clinical study has been 
planned to test new medications and determine their 
effectiveness (NCT03332030). In this study, patients with 
Neurofibromatosis type 1 (NF1) were used to create an 
induced pluripotent stem cell bank (iPSC) (NF1). NF1 is 
a common neurocutaneous disease that frequently devel-
ops tumors of both benign and malignant types [44]. The 

main method that used in vivo and in vitro CRISPR/Cas9 
study to treat diseases showed in Figs. 3 and 4.

To identify a particular target drug for NF1, CRISPR/
Cas9 was used to create NF1 homozygous (NF1-/-) and 
NF1 heterozygous (NF1+/-) cell lines, as well as NF1 
wild type (NF1+/+). The discovery of NF1-targeted 
therapies may be aided by the opposite or alleviated char-
acteristics. Despite promising clinical trial results, more 
research is needed to ensure that CRISPR/Cas9 is a safe 
and effective method of treating human cancers [45]. On 
the other hand, CRISPR Cas9 indirectly can be used in 
cancer therapy to find out the drug-resistance mutation 
in a short period of time. For example, through applying 
CRISPR Cas9, only in 40  min can determine the FLT3-
F691L with a sensitivity of 0.1% [46].

Challenges of CRISPR/Cas9
Even though the previous explanation suggests that 
CRISPR/Cas9 is a promising approach, this editing 
system still has a number of limitations and risks that 
make it challenging to use in clinical trials due to its 
recent discovery and use in humans. Immunogenicity, 

Fig. 3 CRISPR/Cas9‑mediated treatment has the potential to cure a variety of diseases. The number of diseases that CRISPR is now used to treat is 
rising by the day. The CRISPR/Cas9 system has been used to generate many disease‑based models for many important human diseases, including 
viral diseases, neurological diseases, cancer, ocular disease, blood diseases, and cardiovascular diseases and disorders, as well as other complex 
genetic human diseases, according to data from clinical trials released recently
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off-targeting, polymorphism, delivery method, and eth-
ics are only several major concerns with the CRISPR/
Cas9 system highlighted with the list of strategies that 
has been developed and can be used to overcome those 
limitations (Fig. 5).

Autoimmune response against endogenous Cas9 protein
The Cas9 protein is one of the three main components 
of the structure of the CRISPR system, and it has a fun-
damental role in binding double-stranded DNA, paired 
with the mRNA guide, and cutting it at a specific site, 
expressly 3 bases before the PAM sequence [104].This 
protein derives from Streptococcus pyogenes, a bacterium 
that is the cause of many common infections in humans. 
It is recognized by the body as an antigen, developing an 
immune response against it [105]. Similarly, the existence 
of a pre-existing immune response to the homologous 
Cas9 protein in Staphylococcus aureus has been reported 
[106]. Indeed, both Staphylococcus aureus and Strepto-
coccus pyogenes, from which the main Cas9 proteins are 
obtained, SaCas9 and SpCas9, have infected humans for a 
long time [106]. Thus, the human immune system recog-
nizes these proteins as foreign and develops an immune 
response against them upon injection, which leads to fast 
degradation of the Cas9 protein, preventing it from per-
forming the gene-editing function [107].

Strategies to overcome immunogenicity
Several strategies have been proposed to overcome limits 
posed by immunogenicity against Cas9. Here, we are giv-
ing an overview of the main ones offered; (i) implement-
ing the CRISPR/Cas system for gene editing early in a 
lifetime; (ii) targeting immune-privileged organs (Fig. 6).

Gene editing in early lifetime
Even before birth, various types of disease can be 
detected in children, and preventing or treating those 
diseases will save thousands of lives worldwide. The 
CRISPR/Cas system has been successfully applied in 
treating various types of inherited diseases in children, 
such as cystic fibrosis, thalassemia, and sickle cell ane-
mia, Mucopolysaccharidosis type IVA [108–113]. Fur-
thermore, CRISPR/Cas9 can inhibit different molecular 
pathways of various common types of cancer in children, 
such as neuroblastoma and lymphoma [114, 115]. More-
over, treating these defects by CRISPR Cas system after 
diagnosed can be done before the infant is immunized 
with anti-Cas protein.

Targeting immune‑privileged organs
Another practical approach to overcoming the risk of 
autoimmune disease is gene editing by CRISPR Cas9 
techniques in those organs recognized as immune-
privileged organs. An Immune privileged organ can be 
defined as a site in the body where a graft tissue can be 
implanted without being rejected by the organism due 

Fig. 4 Overview of CRISPR/Cas9‑based gene editing of human iPSCs which includes both in vivo and in vitro methods. Gene editing techniques 
like CRISPR/Cas9 have allowed researchers to develop isogenic control human iPS cell lines to study the genetic pathways underlying disease and 
cellular function
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to an immunological reaction formed against it [116]. 
Examples of immune privilege organs are eyes [117], 
brain [118], placenta, fetus [119], and testicles [120].

Many congenital eye disorders lead to blindness and 
other defects in the eyes, such as Leber congenital amau-
rosis type 10, retinal dystrophy caused by a mutation 
in the CEP290 [121]. Fortunately, many studies proved 
that the eyes are one of the immune-privileged organs 
that can successfully imply CRISPR Cas9 on it and edit 
a particular mutation there [122]. For example, Jain et al. 
employed CRISPR-Cas9 genome editing in human TM 
cells and in a POAG animal model to reduce the expres-
sion of mutant MYOC, resulting in a reduction in the 
stress on the ER [123].

CRISPR offers an excellent opportunity for scientists to 
reach high gene editing efficiency in fetuses and embryos, 
as the immune system has not yet reached maturity. Nev-
ertheless, Because of the substantial danger of embryo 

off-targeting associated with its use in vivo, it is illegal in 
many countries. For example, CRISPR/Cas9’s off-target-
ing rate was 16% in a study aiming to target the POU5F1 
gene in embryos [124]. Correspondingly, due to the 
cleavage of both alleles, off-target cleavage of Cas9 causes 
chromosomal loss and hemizygous indels [125]. These 
findings show that chromosomal content can be manipu-
lated. Still, it requires other skills and strategies to reduce 
the high risk of off-targeting and loss of DNA fragments.

Additionally, testicles are another immuno-privi-
leged organ that the gene editor can target to correct 
the mutated genes and deactivate oncogene in cancer 
patients [120]. These genes can be identified and reverted 
to their normal function through CRISPR Cas system. 
Sun et al. found that male fertility genes in mice can be 
dispensable for further fecundity by knocked out through 
CRISPR/Cas9 [126]. Furthermore, in mice, CRISPR/

Fig. 5 Challenges and overcoming strategies of CRISPR/Cas9. Immunogenicity, off‑targeting, polymorphism, delivery technique, and ethical issues 
are main limitations, difficulties; and challenges of the CRISPR/Cas9 system in clinical trials and its recent discovery and usage in humans
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Cas9-mediated gene editing uncovered 30 testis-enriched 
genes not required for male fertility [127].

Likewise, brain is another immune privileged organ, 
and several studies were performed in vivo without 
immune tolerance. Normalized FMR-1 gene expression 
was achieved by CRISPR/Cas9-mediated deletion of the 
CGG repeat in hiPSCs from fragile X syndrome patients, 
a change that was sustained even after differentiation into 
neural progenitor cells (NPCs) and mature neurons; in 
addition, hypermethylation of the CpG sites upstream of 
FMR-1 was reversed [128].

Off‑targeting
Another main concern about using CRISPR/Cas9 in 
recent years is having a high number of off-targeting 
[129–131]. When implying the CRISPR Cas9 system in 
a complex genomic species such as mammalians, the 
gRNA might bring to a wrong target due to similarities 
within the genome, which may lead to further muta-
tions being introduced in undesired genomic locations 
[132]. In recent years, many bioinformatics tools have 
been developed to help predict and reduce off-target 
modifications. These should be further improved to 
enable researchers to use them effectively in the devel-
opment of new therapies.

Strategies to overcome off‑targeting
The main strategies that have been successfully per-
formed in previous studies can be classified into three 
main groups; (I) bioinformatics tools to design more 
accurate gRNA and predict off-targeting; (II) use of 
Cas9 nickases; (III) add anti-CRISPR proteins.

Bioinformatics tools
Bioinformatics tools play a crucial role in analyzing, 
predicting, and determining the CRISPR Cas system. 
Bioinformatics tools allowed Francisco Mojica to dis-
cover that the system previously found in bacteria also 
existed in archaea [133]. Further, bioinformatics tools 
help scientists design more efficient gRNAs, detect 
the accurate editing site within the whole genome, and 
evade off-targeting percentage probability (Table  3) 
[134]. Studies have shown that the gRNA is responsible 
for most of the off-targeting [135]. For example, many 
studies have shown a direct correlation between gRNA 
length and the number of off-targeting; thus, finding 
the perfect size of the gRNA is essential to reduce the 
off-targeting probability [136]. Such as reducing the 
length of gRNA to less than 20 nucleotides have a sig-
nificant role in lowering off-targeting by about 5000 
folds in the same efficiency of the longer gRNA [34, 
122]. According to another study, most of the mis-
matches occur within the last three nucleotides placed 

Fig. 6 ‘Immune‑privileged’ sites and CRISPR/Cas9‑mediating gene editing. Implementing the CRISPR Cas system for gene editing early in person’s 
life; and targeting immune‑privileged organs are all attempts to overcome the limitations provided by immunogenicity against Cas9



Page 16 of 30Rasul et al. Molecular Cancer           (2022) 21:64 

at the opposite side of the PAM sequence, thus remov-
ing these nucleotides and maintaining the length of 
gRNA about 17 nucleotides crucial role in the reduc-
tion of off-targeting [137]. On the other hand, gRNAs 
shorter than 15 base pairs are not safe as they would 
lose the specificity and could not bind the right target 
inside the nucleus [138].

Cas9 nickases
Another practical approach to reducing the number of 
off-targeting is mutating in one nuclease domain in just 
one strand of the DNA by CRISPR nickase, which crucial 
to create nick that quickly repaired in the cells nickase 
[155]. Cas9 nickase has a different breaking mechanism 
than the normal Cas9 protein; in particular, it breaks 
down just one strand of the DNA, and they use double 
adjacent gRNAs rather than sgRNAs (Fig. 7). Therefore, 
editing genes by using Cas9 nickase reduces further dam-
age in the target DNA, and it has a significant role in 
reducing the number of off-targeting [156]. Furthermore, 
it was shown that paired nicking could reduce the risk 
of off-targeting by 50 to 1500 folds in cell lines, and in 
mouse zygotes, it allows the gene knockout without any 
effect on cleavage efficiency [155].

Anti‑CRISPR proteins
Inactivation of Cas9 protein after targeting its site may 
also reduce the number of off-targeting [134]. It has been 
proven that the number of off-targeting is correlatively 
increased as long as the Cas9 protein is expressed in the 
human tissue culture [137]. Deactivation of Cas9 protein 
can be obtained through using anti-CRISPR proteins 
(Acr) [157]. Acr proteins are produced in both bacte-
rial and human cells and allow to disable CRISPR func-
tion [158]. Moreover, more than 50 anti-CRISPR proteins 
have been discovered so far, synthesized by viruses as a 
defense system against prokaryotic cells [159]. The first 
Acr protein discovered that deactivates the CRISPR type 
I system in P. aeruginosa, while the other Acr proteins 
can act on different types of CRISPR, such as types II, 
III, and V [31]. Acr proteins are about 52 to 333 amino 
acids, meaning they are tiny molecules and diverse 
with no sequence overlap with other proteins [159, 
160]. Also, each Acr protein has a specific and unique 
sequence free of conserved sequences, which increases 
their diversity [161]. Having a small size and a unique 
genomic sequence make the recognition of Acr difficult 
by standard homology-based methods. Therefore, these 
proteins can target their aimed sequences before being 
recognized. Furthermore, using a different mechanism is 
one of the successful keys used by Acr to deactivate the 
CRISPR/Cas9 system [162]. For example, AcrIIA4 binds 

to both Cas9 and sgRNA rather than binding with just 
one of them [161]. The efficiency of Acr depends on three 
main mechanisms, which are the crRNA concentration, 
DNA binding obstruction, and DNA cleavage inhibition 
[163]. When the viral genome is injected into the phage, 
its Acr proteins in a small concentration make the host 
cells immunosuppression and prepare the bacteriophage 
for future infections by the phase [164]. Conversely, hav-
ing a high concentration of Acr proteins and vulnerable 
bacteriophage disables the function of the CRISPR sys-
tem from the infected bacteria [164]. Moreover, Acr pro-
teins have a stronger binding affinity with CRISPR; thus 
it is required a small concentration disable the function 
of the CRISPR system. On the other hand, anti-CRISPR-
associated (Aca) proteins work oppositely to Acr proteins 
by preventing the transcription of anti-CRISPR proteins 
[163]. Therefore, the CRISPR system can be improved by 
using Aca proteins to suppress Acr proteins. Also, the use 
of Acr proteins that imply phage instead of antibiotics 
may overcome the issue of drug resistance[165].

Screening before the treatment
Pre-existing mutations in genes like TP53 and KRAS 
may raise the risk of additional mutations during 
CRISPR Cas cancer therapy [166]. And the two pri-
mary ways for dealing with this problem are screening 
before using the CRISPR Cas system and monitoring 
the patient after injection.

Polymorphism in cancer
Unlike other genetic diseases such as Duchenne Mus-
cle, Dystrophy, and cystic fibrosis, cancer relies on sev-
eral mutations [167–170]. Moreover, dysregulation of 
the multiple genes leads to cancer most of the time. For 
example, mutations happen in approximately 190 codons 
in the human TP53 gene, and around 25% of the muta-
tions occur in eight codons [171]. Hence, editing a sin-
gle mutated nucleotide is not enough in most cases that 
are widely performed in gene therapy [170]. Correcting 
mutated nucleotide by knocking-in is much more chal-
lenging in CRISPR Cas9 since it is more precise than 
knocking out, which creates alterations, as knocking in, 
all of the cancer-causing genes takes longer and needs 
multi-guide RNA [172]. However, by CRISPR Cas9, 
knocking in is potentially helpful in many ways, such as 
studying particular gene variation to find out the gene 
regulation [172].

Correcting or editing the mutated nucleotides of 
tumor suppressor genes is one of the approaches that 
should be thought about to obtain the desired result 
in cancer therapy by knock-in in the mutated gene 
(Fig.  8). CRISPR/Cas9 technology targeted these 
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tumor-suppressor genes to inhibit or reduce tumori-
genesis by restoring the activities of tumor-suppressor 
genes [34]. However, as in cancer, there is plenty of 
mutations in tumor-suppressor genes, it requires a 
higher number of gRNA, and there is a higher risk of 
off-targeting. On the other hand, the CRISPR Cas sys-
tem can disrupt the nucleotides located in the active 
site of the protein to suppress the activity of onco-
genes, such as KRAS in pancreatic cancer and ATM 
in neuroendocrine cancer by deleting their inactiva-
tion sequences (Table  1) [34, 173]. On the other side, 
in TNBC cells, the deactivation of CXCR7 and the co-
knockout of CXCR4 and CXCR7 have been shown to 
inhibit the expression of oncogenes and may have a 
potential target in TNBC treatment [52]. For the Cas 
system to be effective in knocking out oncogenes, the 
proper gRNA must be designed to target the binding 
site of oncogenes and prevent protein-protein interac-
tion, which is an essential step in the molecular path-
way of cancer progression [52].

Strategies
We described two primary solutions for managing poly-
morphism issues: CHyMErA and bioinformatics tech-
niques to investigate the protein interaction site and 
forecast the results.

Performing CHyMErA
To edit many targets in a single mammalian cell, CRISPR 
may be utilized with various kinds and procedures, such 
as the CHyMErA (Cas hybrid for multiplexed editing 

and screening applications) method. CHyMErA depends 
upon two Cas proteins, Cas9 and Cas12a nucleases, 
rather than just the standard CRISPR/Cas9 gene editing 
(Fig.  9) [174]. Exons may be deleted using CHyMErA, 
which is helpful for the high deletion of gene sequences. 
As a result, employing CHyMErA to target multiple sites 
is one of the novel approaches to overcoming cancer pol-
ymorphism [175].

Detecting protein interaction site
Bioinformatics tools can have a crucial role in predict-
ing and obtaining the desired results in knocking out. 
For example, different databases can be used for finding 
out the interaction site of the proteins, such as Inter-
Pred [176]. By using this platform, amino acids located in 
the active site of the proteins can be detected, and then 
gRNA is designed based on it. Moreover, different data-
bases can be used for predicting the result of CRISPR 
knockout (Table 3).

In conclusion, knock-in and Knock-out for oncogenes 
and tumor suppressor genes are critical in gene editing 
using CRISPR Cas9. However, knocking in to edit a par-
ticular nucleotide should be performed more precisely. 
Indeed, having more than one mutation in cancer cells 
required performing other techniques such as ChyM-
ErA, which can target multi targets by binding two cut-
ting DNA enzymes Cas9 and Cas12a. On the other hand, 
creating one mutation in the protein active site of the 
oncogenes is enough to suppress its role, so performing 
Knocking out in cancer therapy to suppress oncogene is 
much more practical.

Fig. 7 Nickase systems consisting of one or two nickases. H840 and D10 are two amino acids found in the Cas9 endonuclease protein that are 
involved in the cutting of one DNA strand by the enzyme. The RuvC domain contains the amino acid H840, while the HNH domain has the amino 
acid D10. The non‑targeted strand is cleaved by Cas9 H840A, while the gRNA‑targeting strand is cleaved by Cas9 D10A. Cas9 can only cut the 
strand complementary to the gRNA in a single nickase; however, a pair of sgRNA‑Cas9n complexes can nick both strands at once (paired nickases). 
Additional concerns for gRNA design when using paired nickases include creating a 5’ overhang, the spacing between the two gRNAs, and the 
relative position of the two gRNA target sites
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The delivery challenges
Choosing a proper safe, and precise delivery technique 
to carry the CRISPR system into the tumor site, espe-
cially in vivo, and targeting the right sequence inside the 
nucleus is another challenge that should be considered. 
CRISPR/Cas9 technologies are delivered through differ-
ent approaches, such as viral, physical, and extracellular 
vesicle-base system delivery techniques [177]. Addition-
ally, each method is used for a specific purpose and has 
its limitations. Thus, the main challenges while choos-
ing the right vector are packaging, delivery, and target-
ing the right site [178, 179]. For example, viral vectors are 
used widely in both in vivo and in vitro, but it has many 
limitations, such as immune response and insertional 
limitation [177]. For instance, after implying viral vec-
tor in vivo, it exposes continuously for a long time and 
increases the risk of mutations and off-targeting [180].

Viral delivery vectors
Adeno-associated viruses (AAV) such as adenovirus 
and lentivirus have been utilized successfully in other 
research in vivo [181] and they do not cause any other 
diseases in humans, only a very few immune responses 
[178, 182]. On the other hand, the main disadvantage of 
AAV has a tiny packaging size, so more than one AAV is 
required to carry all the CRISPR systems such as gRNA 
and Cas protein [182]. Additionally, the maximum size 
that a single AAV vector can deliver is about 4.7 kbp, 
while the genomic size of SpCas9 alone is around 4.3 kbp 
[178]. Thus, more than one victor is necessary to hold all 
the systems.

Non‑viral delivery vectors
Besides that, non-viral delivery vectors are another 
approach, such as lipid nanoparticles and inorganic nano-
particles [183]. In addition, a non-viral delivery approach, 
like nanoparticle-based delivery, allow for more frequent 

Fig. 8 Mechanisms of DNA repair outcomes of genome editing. Typically, DNA double‑strand (ds) breaks caused by CRISPR/Cas9 are repaired via 
either homology‑directed repair (HDR) or non‑homologous end joining (NHEJ), depending on the circumstances. Exogenous ‘repair templates’ can 
be introduced into the genome by HDR, whereas NHEJ creates random insertions and deletions (indels) that can disrupt coding areas or catalyse 
genome rearrangements. The preference for HDR or NHEJ after DNA damage can be increased by small compounds that interfere with each system 
and so bias the cell toward one or the other after DNA damage
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administration of gene therapy with lower risk of immu-
nogenicity, less exposure to nuclease and more accurate 
targeting [183, 184]. Furthermore, non-viral vectors have 
a greater capacity than viral vectors without integrating 
in the carried genome [185]. On the other hand, extra-
cellular vesicle-based systems have been utilized in both 
in vivo and in vitro systems successfully and, compared 
to the other system, are safer and cheaper [186]. Another 
challenge is the delivery and efficiency percentage of the 
CRISPR system into the targeted size, especially in cancer 
therapy with total editing efficiency [178]. And according 
to Yin et al. (2014), the total delivery efficiency is 1 out of 
250 in targeting liver cells using hydrodynamic injection 
[187] (Table 4).

Strategies
One of the effective ways to overcome the packaging 
challenge is splitting the Cas9 protein into two AAV 
(AAV-split-Cas9) vectors instead of one [188]. As pre-
viously explained, large size vectors increase the risk of 
off-targeting and mutation [189]. As a result, employ-
ing a smaller Cas9 protein and splicing it into two AAV 
vectors is critical for reducing off-targeting and increas-
ing delivery efficiency [190]. Another option that can be 
used to reduce the risk of off-targeting associated with 

delivery techniques is the use of ribonucleoprotein (RNP) 
complexes, such as recombinant CRISPR-Cpf1 Ribonu-
cleoprotein (CRISPR-Cpf1-RNP) suppressed off-target 
activity in mouse cells [191]. Furthermore, according to 
their results, Mout and his colleagues applied Cas9-RNP 
methods, which efficacy around 95% in cultured cells 
[192]. This approach also degrades after 24 to 48  h of 
injection [182] (Table 4). Thus, the risk of further muta-
tions and off-targeting that occur due to the continuous 
expression of viral vectors is reduced significantly [177] .

Ethical issues and CRISPR/Cas9 technology
Human genetic alterations have long been a source of 
ethical debate; CRISPR/Cas9-mediated genome editing 
has provided a new perspective. Considering the unpre-
dictability and broad-reaching effects of this technology’s 
appealing applications, a thorough examination of its 
ethical and societal implications is required. The concep-
tions of various members of society, such as the public 
and religious academics, are fundamental.

Current ethical standpoint
The application scope of CRISPR/ Cas9 is expanding at 
an incredible rate. Switching genes on or off to inves-
tigate how they work or causing mutations in cells to 

Fig. 9 DNA editing platform CHyMErA is a combinatorial system. Cell lines harbouring nuclear SpCas9 and LbCas12a, as well as a hgRNA expression 
cassette, provide the basis of the CHyMErA system. Cas12a gRNAs are fused with Cas9 and expressed under a single U6 promoter in hgRNAs. This 
process is completed by Cas12a, which identifies the direct repeat sequence and cuts upstream of it to release functional Cas9 and Cas12 gRNAs 
that can be loaded onto their respective nucleases for directed combinatorial genome editing
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learn why and how they become malignant, are some 
of the opportunities it has opened up in molecular biol-
ogy research. Gene editing can be used to create resist-
ant crops and stronger police dogs, for example [210, 
211]. Another highly contentious concept would edit 
the human genome permanently to eliminate disease-
causing mutations or even improve or introduce desired 
features in offspring by inserting helpful genes and this is 
debatable [212]. Non-reproductive cell genome modifica-
tions are not heritable, whereas germ cell modifications 
can be passed down to the next generation. As a result, 
the attractive uses of this approach raise ethical, moral, 
and safety concerns [213]. Human germline modification 
using CRISPR/Cas9-based gene editing has raised con-
cerns about threats to human safety and dignity, as well 
as the potential for genocide. There was an effort to halt 
human genome research until a national or global agree-
ment on society’s acceptance of this new technology was 
reached [214].

Morality concepts
Morality concepts, particularly in biomedicine, are based 
on empirical research and entail evaluating potential risk-
benefit ratios, to maximize the latter while decreasing the 
former. It is vital to assess the spectrum of conceivable 
outcomes, the likelihood of each occurring, and the vari-
ous arguments for the outcomes of any one while making 
moral decisions. There are at least three major causes for 
ethical concerns concerning CRISPR genome engineer-
ing technology. Concerns have been raised about the 
power and technical limitations of CRISPR technology in 
the first concept. These drawbacks include a lack of on-
target editing efficiency [215], incomplete editing (mosai-
cism) [216, 217], and inaccurate on-target or off-target 
editing [218, 219]. CRISPR experiments with animals and 
human cell lines have revealed these limitations. Tech-
nology, on the other hand, is evolving at a tremendous 
speed. The second concern is for the transformed spe-
cies’ long-term survival: if they will be influenced indefi-
nitely and whether the edited genes will be passed down 
through generations, perhaps influencing them in unan-
ticipated ways.

Making precise predictions regarding the future of a 
modified creature and estimating potential hazards and 
advantages may be difficult, if not impossible, given the 
aforementioned technical constraints and the intricacies 
of biological systems. As a result, the uncertainty created 
by these circumstances makes precise risk/benefit assess-
ments difficult, making moral decision-making more 
difficult [220]. Finally, even if the genome is altered as 
planned and the necessary functional output is achieved 
on time, the complicated link between genetic informa-
tion and biological phenotypes is not fully understood, 

according to the skeptical viewpoint. As a result, 
depending on the circumstances, the biological impact 
of altering a gene in germline and/or somatic cells may 
be unknown. The intricate regulatory actions of many 
genes govern many biological features [221]. As a result, 
“designing” a biological phenotype at the organismal level 
is difficult, if not impossible.

Strategies
On the Brightside, it has the potential to make a sig-
nificant difference in terms of health and wellbeing 
if used properly [222]. There are several reasons why 
this technology can be used correctly, although patient 
safety is one of the most important. One of the most 
compelling arguments in favor of allowing the use of 
this technology is the need to protect patients [212]. 
When germline editing research is applied in a clini-
cal setting to avoid the inheritance of a specific genetic 
condition, it may alleviate the sorrow and anxiety that 
parents encounter in the life of the possibility that their 
child may be born with that genetic disease [214, 223]. 
Recently, Bioengineer Feng Zhang of MIT and Har-
vard has modified the Cas9 enzyme to limit mutations 
outside its target region [224]. Furthermore, the error 
rate of CRISPR/Cas9 might be further decreased to a 
safe range if further modifications are introduced [225]. 
Considering this, CRISPR/Cas9 mediated genome edit-
ing safety concerns might be overcome to some extent. 
Overall, CRISPR/Cas9 technology’s risk profile var-
ies depending on the design. After overcoming some 
ethical and safety problems, some are approved or pre-
dicted to be used soon. On the Brightside, it may sig-
nificantly improve health and quality of life, but still, it 
relies on how this technique is used.

Conclusion and future perspectives
The therapeutic genome editing field has made tremen-
dous progress in recent years, progressing from essential 
investigation to preclinical development and into human 
trials, in particular for ex vivo HSC and T cell editing and 
also for in vivo liver genome editing, as a result of the 
relatively efficient delivery methodologies developed for 
these systems. However, several considerable challenges 
need to be addressed before the biomedical promise of 
genome editing can be fully realized. First, delivery has 
always been one of the most, if not the most, formidable 
problems in the gene therapy field. Importantly, HDR and 
even knockout efficiencies are currently low in many tis-
sues, so higher delivery efficiency is needed to compen-
sate. There should be an international law to ensure that 
gene editing does not harm humanity, and experiments 
should be restricted in a health care system.
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CRISPR‑Cpf1Ribonucleoprotein; HDR: homology‑directedrepair; NHEJ: non‑
homologousend joining; HSCs: hematopoieticstem cells.
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