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Abstract

Solar ultraviolet-B (UV-B) radiation has played a crucial role in the evolution of life on Earth. UV exposure
presents both risks and benefits to humans. Optimal UV-B exposure behaviors, that ensure balance between
the risks and benefits of exposure to UV-B depend both on environmental and physiological factors and can-
not be easily determined. The present review provides the current state of knowledge relative to the effects
of UV-B radiation to humans. The physical mechanisms that control the levels of solar UV-B radiation at the
Earth’s surface are also discussed. A comprehensive review of the studies reporting on current trends in the
levels of solar UV-B radiation at the surface and model projections of its future levels is examined and reveals
the important role of man-made climatic changes in its evolution. The review provides evidence that despite
the success of the Montreal Protocol, the future evolution of the levels of solar UV-B radiation at the Earth’s
surface has important uncertainties caused by the expected changes in our climate. Therefore, it is recom-
mended that the usual precautionary measures to protect from excess exposure of humans to solar UV-B
radiation should continue to apply in the decades to come.

climate change; effective UV doses; Montreal Protocol; solar ultraviolet radiation; solar UV-B
variability
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1. INTRODUCTION

Life on Earth is protected from a number of dangerous
forms of energy coming from the sun and from space.
The upper and lower layers of the atmosphere not only
serve as a shield but also act as a barrier that keeps the

mean global air temperature above 14�C. This is effected
by the so-called greenhouse gases (GHGs; CO2, meth-
ane, N2O, water vapor), without the presence of which
our planet would have ground temperatures on the
order of �18�C. Our protection from high-energy par-
ticles and radiation coming from the sun is provided
mainly by their absorption in the upper layers of the
atmosphere, mainly by oxygen atoms, ozone molecules,
and other constituents. Overall, the atmosphere is com-
posed of 78% nitrogen and 21% oxygen, and the remain-
ing 1% includes greenhouse gases and other minor
constituents.
Ozone is formed in the upper layers of the atmos-

phere by the interaction of solar ultraviolet radiation with
molecular oxygen, and it protects us from dangerous
parts of ultraviolet-B (UV-B). It should be remembered
that the UV part of the solar spectrum carries to the
Earth only 9% of the total solar energy. These photons
enter into a large number of photochemical reactions.
The interaction of solar light and solar particles with the
upper layers of the polar atmosphere is responsible for

0031-9333/23 Copyright © 2023 the American Physiological Society. 1789

Physiol Rev 103: 1789–1826, 2023

First published February 14, 2023; doi:10.1152/physrev.00031.2022

REVIEWARTICLE

Downloaded from journals.physiology.org/journal/physrev (091.140.010.251) on April 25, 2023.

https://orcid.org/0000-0002-4795-523X
https://orcid.org/0000-0002-1511-0603
https://orcid.org/0000-0001-8897-3867
https://doi.org/10.1152/physrev.00031.2022
https://crossmark.crossref.org/dialog/?doi=10.1152/physrev.00031.2022&domain=pdf&date_stamp=2023-2-14


spectacular visual phenomena, such as those seen in
the celestial curtains of aurora borealis and aurora
australis.
For historical purposes, it is noted here that air (our

atmospheric envelope) is not an essential element, as
it was considered by ancient philosophers (1). Rather,
it is a mixture of gases that were discovered during
the enlightenment period (2). In 1840, Sch€onbein dis-
covered that during electric sparks or after thunder-
storm activity there was a particular odor (smell) in the
surrounding air, and he attributed it to the presence of
an “unknown” gas. He named it “ozone” from the
Greek verb �oz v , “I smell” (3). Since then, the absorp-
tion of solar UV radiation by ozone has been studied
by Fabry and Buisson (4), and its seasonal and interan-
nual variability garnered attention in the first decades
of the twentieth century (see sect. 3).
Various studies have reported that atmospheric ozone

protects humans and animals from the dangerous UV
part of the solar spectrum (5, 6). Angell and Korshover, in
a series of articles dating back to the 1960s (7–9), discov-
ered that ozone concentrations fluctuated over short
and long periods of time. Other cyclical or quasi-cyclical
phenomena that affect the total column of ozone were
discovered in the 1980s (10). Such were the El Ni~no
southern oscillation and the amplitude of the solar cycle
by Angell and Korshover; the first estimate of the ampli-
tude of the 11-yr solar cycle in stratospheric temperatures
(which depend on the ozone abundance) was first mod-
eled by Zerefos and Crutzen (11). At that time, model-
ing of ozone was done with atmospheric chemistry
models based only on oxygen. The models were
improved by Paul Crutzen to include nitrogen species
in the early 1970s, which marked the era of modern
atmospheric chemistry. All of these studies have

shown that ozone concentrations vary not only by sim-
ple chemical reactions with oxygen molecules (12) but
also by interaction between dynamics of the atmos-
pheric engine and by more complex chemical and
photochemical reactions (2, 13).
In the 1970s, the calibration of homogeneous satellite

measurements created a revolution in the measurement
of long-term ozone changes (ozone trends) (14). The final
clue came with the discovery of the “ozone hole” (15, 16)
and the establishment of the Montreal Protocol on
Substances that Deplete the Ozone Layer (commonly
referred to as the Montreal Protocol), the landmark multi-
lateral environmental agreement that regulates the pro-
duction and consumption of nearly 100 manmade
chemicals referred to as ozone-depleting substances
(ODSs; see for example Ref. 17).

2. SIGNIFICANCE OF UV-B RADIATION FOR
HUMANS AND THE ECOSYSTEMS

UV radiation extends at wavelengths between 100 and
400 nm and is divided into the UV-C (100–280 nm), the
UV-B (280–315 nm), and the UV-A (315–400 nm) subre-
gions of the solar spectrum. Although UV radiation is
only a small fraction (�9%) of the electromagnetic radia-
tion emitted by the sun, it is of exceptional biological sig-
nificance. Solar UV-C radiation is absorbed mainly by
oxygen and its constituents in the upper atmosphere.
Stratospheric ozone also absorbs UV-C radiation as well
as most of the UV-B radiation, and only a very small frac-
tion of the solar UV-B radiation reaches the surface of
the Earth (18, 19). The inverse relationship between
ozone and UV-B was first quantified by Bass and Paur
(20), and it was experimentally proven under clear skies
in the 1990s by spectroradiometry (21, 22).
UV-B radiation that reaches the surface of the Earth

is a very small fraction of the total solar radiation
(<1%), although its biological significance is remark-
able (23). Exposure to UV-B radiation is vital for many
living organisms, including humans (24–29), and has
played a key role in the evolutionary process. For
example, the production of vitamin D in the human
skin, driven by UV-B radiation, is the main evolution-
ary force that caused white skin development when
humans migrated from central Africa to northern lati-
tudes (30, 31).
Because humans are part of the natural environment,

changes driven by UV-B in the function of ecosystems
have both direct and indirect impacts on humans.
During exposure to sunlight, the UV-B photons enter the
skin and photolyze 7-dehydrocholesterol to previtamin
D3, which in turn is isomerized by the body’s tempera-
ture to vitamin D3 (32). Several studies have indicated
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that vitamin D enhances immune function (33) and pro-
tects humans from infections (34–37), autoimmune dis-
eases (38, 39), mental disorders (40, 41), and cancer
(42–44). Additional beneficial effects of UV radiation are
summarized in the study of Juzeniene and Moan (27).
Overexposure to UV-B radiation can be detrimental

and is related to numerous health issues (45–47). For
example, it can cause DNA damage (48) and is among
the main environmental risk factors for melanoma and
nonmelanoma skin cancers (49) (FIGURE 1). It is also
related to suppression of immune response (52) and
induction of erythema in the human skin (53). UV-B is
also related to eye diseases (54–56) such as cata-
racts. Interaction between UV-B radiation and specific
environmental contaminants can also result in harmful
effects for humans and ecosystems (57, 58). It must
be noted that excessive exposure to UV radiation has
been found to lead to the degradation of vitamin D
instead of contributing to its formation (59), which
shows the significance of maintaining optimal expo-
sures to UV sunlight.
Appropriate weighting factors, commonly referred as

action spectra, are used (50, 60–62) for the quantifica-
tion of the ability of solar UV radiation to induce biologi-
cal effects on humans, plants, and animals. Action
spectra represent the relative efficiency of the irradiance
(i.e., the intensity of the total radiation that reaches a
plane parallel surface) at each wavelength to cause bio-
logical effects. Biological doses are calculated after mul-
tiplying the irradiance at each wavelength by the
appropriate weighting factor and then integrating over

the full range of UV wavelengths. Three biologically
active spectra that are widely used and are of great in-
terest for humans are the spectra for

• erythemal irradiance, that is, the spectrum that
describes the effectiveness of different wavelengths
relative to their ability to induce erythema in the
human skin. The erythemal irradiance action spec-
trum is well studied and has been defined by the
International Commission on Illumination (CIE) (thus,
it is commonly referred to as the CIE action spec-
trum) (53).

• the formation of the provitamin D3 in the human skin.
The particular action spectrum is under debate (63,
64), and different studies propose different action
spectra (see FIGURE 1) (65–67).

• DNA damage. The action spectrum for DNA dam-
age is well defined (48), although various equations
have been proposed for its quantitation (e.g., Refs.
68, 69).

Although in all the above cases UV-A wavelengths
also contribute to the integrated doses, the greatest
contribution comes from UV-B.
In addition to its direct effects on the health of living

organisms, solar UV-B radiation affects life on earth indi-
rectly through several physical and chemical processes.
For example, UV-B radiation is very important for tropo-
spheric air quality (70, 71) and affects the biogeochemi-
cal cycles that subsequently determine the Earth’s
environmental conditions (for more information see for
example Ref. 72).
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FIGURE 1. A: biological action spectra for erythema and production of previtamin (Previt) D3. Adapted from Ref. 50 with permission from
Photochemical and Photobiological Sciences. B: estimates of the incidence (new diagnoses) of cutaneous malignant melanoma for selected locations
(note that these estimates are not adjusted for the differing age distributions of the populations). Reproduced from Ref. 51 with permission from
Photochemical and Photobiological Sciences.
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3. DISCOVERY AND FIRST EFFORTS TO
MEASURE UV

UV radiation is considered to have been first discovered
by the German scientist Johann Wilhelm Ritter (73) in
1801. Ritter noticed that silver chloride-soaked paper
was transformed faster from white to black when it was
exposed to invisible rays just beyond the violet end of
the spectrum. He named the radiation that caused this
effect “(de-)oxidizing rays” (74, 75). Throughout the nine-
teenth century, significant progress regarding the under-
standing of the properties of UV radiation was achieved,
while the term “chemical rays” was commonly used to
describe it (75).
The relationship between sunlight and ozone, as

well as the role of stratospheric ozone, was initially
discussed at the end of the nineteenth century and
established at the beginning of the twentieth century
(75, 76). Cornu and Spottiswoode (77) noted that so-
lar UV radiation that reaches the Earth’s surface
decreases rapidly with decreasing wavelength for
wavelengths shorter than 300 nm; the cutoff in solar
UV radiation that reaches the Earth’s surface at
�293 nm is due to attenuation by ozone, most of
which occurs in the stratosphere (78, 79). Miethe and
Lehmann (78) determined that the lower limit in the
wavelength of photons that reach the Earth’s surface
is between 291.21 and 291.55 nm. A first detailed
study of the spectral composition of sunlight in the
UV region and the absorption characteristics of
ozone was performed by Fabry and Buisson (4, 79).
The interactions of solar UV radiation with atmos-
pheric constituents and the spatiotemporal variabili-
ty of UV radiation were also further discussed in
other studies that were published in the same period
(80–82).
The discussion relative to the potential biological

effects of the “chemical rays” started at the beginning of
the nineteenth century (83), and many studies relative to
the effects of UV radiation on humans (e.g., Refs. 84–87)
and on other living organisms (e.g., Refs. 88, 89) were al-
ready published in the first four decades of the twentieth
century. It is worth noting that a first effort to quantify the
correlation between UV-B radiation and erythema in the
human skin was performed in 1928 (90). These first stud-
ies confirmed the very significant role of solar UV radia-
tion in life on Earth.
Efforts to systematically measure the levels of solar

UV radiation operationally for biological purposes began
during the interwar period (e.g., Refs. 91–95). These first
broadband UVmeasurements were performed with sim-
ple sensors and were highly uncertain. Since then, grad-
ual progress in the field of radiometric measurements
has been achieved and has led to improved

understanding of the characteristics of solar UV radia-
tion that reaches the Earth’s surface. Measurements of
spectral solar UV radiation at particular wavelengths
have been performed since the beginning of the nine-
teenth century (4, 79) and were used to retrieve the total
column of ozone (a measurement of the total amount of
atmospheric ozone in a given column). The total column
of ozone was estimated from the difference between
the irradiances at wavelengths where absorption by
ozone differed significantly. Thus, absolute calibration of
the sensors was not necessary, and these measure-
ments cannot provide information for the absolute varia-
tions of the irradiance.
High-quality spectro-radiometric measurements, not

only in the UV region, were not generally available before
the 1970s mainly because of poor calibration techniques,
poor traceability, a lack of temperature compensation in
the instruments deployed, and generally unsatisfactory
maintenance (96). The quality of the measurements of so-
lar irradiance was improved substantially in the 1970s and
the 1980s when the first ground-based networks for the
monitoring of solar irradiance were developed, which
were traceable to national and international reference
standards (96).

4. CONCERN FOR UV-B INCREASES
BECAUSE OF THE SEVERE DESTRUCTION
OF THE OZONE LAYER IN THE 1980S AND
1990S

Extensive destruction of the stratospheric ozone over
Antarctica was first reported in the mid-1980s (16, 97,
98) and was attributed to anthropogenic emissions of
ODSs since the 1970s. The most effective ODSs are
humanmade chemicals [halocarbons and chlorofluor-
ocarbons (CFCs)] that were mainly used in refriger-
ants, solvents, and propellants and as foam-blowing
agents. ODS have long lifetimes in the troposphere
and can enter the stratosphere, where they release
atoms from the halogens through photodissociation,
which subsequently catalyze the breakdown of ozone
into oxygen. Atmospheric conditions during the Antarctic
spring favor the chemical destruction of ozone due to the
presence of ODSs, and these circumstances result in the
extensive destruction of the ozone layer. In the following
years, decreasing stratospheric ozone was also reported
over the Arctic (99–101) and over middle latitudes (102–
104). Stratospheric ozone depletion resulted in increased
surface solar UV-B irradiance over many regions of the
world, including areas in the densely populated middle
latitudes of the Northern Hemisphere (21, 22, 105–107).
Further decreases in stratospheric ozone in the future
would result in extremely high UV-B levels, with
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detrimental impacts for human health and the functional-
ity of ecosystems. It is estimated that two million cases of
skin cancer in humans per year will be prevented by
2030 because of the adoption of measures suggested
by the Montreal Protocol (108).
Increased awareness among the scientific community

and public authorities led to the signing of the Montreal
Protocol, which is the only United Nations (UN) treaty to
have been signed by all UN Member States. The Montreal
Protocol, which was adopted in September 1987, prohib-
ited the emissions of the most severe ODSs and pre-
vented a further decrease in the levels of stratospheric
ozone as well as a subsequent increase in the levels of
UV-B (109–111). McKenzie et al. (111) simulated the levels of
UV-B radiation assuming that the Montreal Protocol meas-
ures were not adopted and showed that the UV index at
middle latitudes would have been already �20% higher
with respect to current levels (FIGURE 2) and would have
increased by approximately a factor of 4 (i.e., 400%)
between 1990 and 2100.
Stratospheric ozone depletion has decelerated

since the mid-1990s, and the first signs of recovery
are now evident (113, 114) because adoption of the
Montreal Protocol drastically limited the emissions of
ODS (115). Nevertheless, more measurements and
more time are needed to confirm that total ozone is
indeed recovering (116, 377). Global climate model
simulations predict that stratospheric ozone will fully
recover after 2050 and may even exceed pre-1970s
levels until the end of the century, depending on the
socioeconomic scenarios considered for the simula-
tions (117). However, as discussed in the following
sections, projections of surface solar UV-B levels are
still very uncertain.

5. UV-B MONITORING IN THE POST-
MONTREAL PROTOCOL ERA

Increased concern for the potential evolution of the lev-
els of UV-B irradiance in the 1980s resulted in a signifi-
cant international effort for limitation of the uncertainties
in UV-B measurements (FIGURE 3). Until the end of the
1970s, measurements of total ozone and spectral solar
UV irradiance were performed manually (118). The first
instruments performing automated measurements of
the latter quantities were the Brewer spectrophotome-
ters that were developed in the late 1970s (119) and
became commercially available at the beginning of the
1980s (120, 121). The Brewer spectrophotometer was
originally developed to perform automated measure-
ments of the total column of ozone as an improvement
of the Dobson instrument (22, 118, 119, 122). In the late
1980s it was modified to measure spectral solar UV

irradiance (123). Since then, >200 such instruments
have been deployed worldwide, constituting a large net-
work (124–126).
Nowadays, improved spectral sensors (FIGURE 4)

(compared with those deployed in the 1980s) have
been developed, providing highly accurate measure-
ments in a wider range of wavelengths extending up
to the visible region (e.g., Refs. 127, 128), and many
UV monitoring networks have been developed (e.g.,
Refs. 129–133). In addition to the improvement in the
technology of the sensors, numerous national and
international intercomparison campaigns for spectral
and broadband UV monitoring instruments have
been performed (e.g., Refs. 135–139) that allowed
identification and constraint of the uncertainties in UV
measurements and established maintenance and calibra-
tion pro-cedures (132, 140–143). Standardization of the
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FIGURE 3. Comparison of normalized UV index (UVI) ratios for summer months at all sites between measurements, calculations for clear skies based
on the ozone assimilation, and clear-sky models for the world avoided (evolution of the UVI if there were no Montreal Protocol provisions) and world
expected (expected evolution of the UV index after the adoption of the Montreal Protocol) scenarios. A–I: Northern Hemisphere. J–Q: Southern
Hemisphere. Note that the vertical axis scale varies between panels. GEOS-CCM, Goddard Earth Observing System-Chemistry-Climate Model; NIWA-
UKCA, National Institute of Water & Atmospheric Research-UK Meteorological Office Climate Assessment. Reproduced from Ref. 111 under CC-BY
license.
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calibration and maintenance procedures and development
of international reference standards led to great improve-
ment in the quality of the measurements. Although in the
1990s one-fold uncertainties in the measurements of well-
maintained and well-calibrated spectral instruments were of
the order of 5% (139), currently uncertainties of the order of
1% are feasible (144, 145).
Instruments aboard satellite platforms cannot directly

measure the surface solar UV-B irradiance. Nevertheless,
analyses of their measurements can give information for
the main atmospheric parameters that affect solar UV-B
irradiance (i.e., total ozone, aerosols, clouds, and surface
albedo). Then the surface solar UV-B irradiance can be
simulated with radiative transfer modeling, where inputs
can be either data sets from a single satellite instru-
ment or a combination of data sets from different sen-
sors. Satellite monitoring provides global coverage
but, as discussed below, is in many cases less accu-
rate or less representative for an area relative to
ground-based monitoring.
The first efforts to measure the profile of ozone in the

atmosphere with satellite-based sensors took place in
the 1960s (146). Satellite-based monitoring of a complete
set of parameters that affect (and can be used to model)
surface solar UV-B irradiance (i.e., total ozone, aerosol
optical properties, and cloud optical properties) started
later, in 1978, when NASA’s Nimbus-7 satellite was
launched into orbit. Nimbus-7 carried the Total Ozone

Mapping Spectrometer (TOMS) and the Temperature
Humidity Infrared Radiometer (THIR) sensors that pro-
vided all necessary information for the modeling of UV-B
irradiance (147–150). TOMS/Nimbus-7 was substituted
by TOMS-Earth Probe (TOMS-EP) aboard the Russian
Meteor-3 satellite in 1994. In 1995 the Global Ozone
Monitoring Experiment-1 (GOME-1) instrument onboard the
second European Remote Sensing (ERS-2) satellite was
also launched and provided total ozone retrievals. Newer
satellite sensors that provide retrievals of atmospheric
and Earth surface parameters that are commonly used to
simulate surface UV-B irradiance are the Global Ozone
Monitoring Experiment-2 (GOME-2) aboard MetOp satel-
lites, the SCanning Imaging Absorption spectroMeter for
Atmospheric CHartographY (SCIAMACHY) aboard the
Envisat satellite, the Ozone Monitoring Instrument (OMI)
aboard the Aura satellite, and the most recently launched
TROPOspheric Monitoring Instrument (TROPOMI) onboard
the Copernicus Sentinel-5 Precursor satellite.
Many satellite-based data sets, mainly relating UV-B

doses to human health, are currently available (151–155).
Although UV doses based on TOMS and GOME-1 mea-
surement have been produced and used in UV-related
studies (e.g., Ref. 156), these measurements are highly
inexact, mainly because of high uncertainties in the opti-
cal properties of aerosols and clouds used for the meas-
urements (157–160). More reliable satellite-based data
sets have been available since the 2000s, when more

Foreoptics

Optic fiber

Monochromator

Recording system

Counting
system

FIGURE 4. Basic principle of operations of the newest technology spectrophotometers used for measurements of the spectral global UV-B irradi-
ance. Solar radiation enters the system through a diffuser that is usually covered by a UV-transparent quartz dome. Then, through an optical fiber, it is
transferred to the monochromator, where it is analyzed at different wavelengths. In many instruments, the monochromatic beam at the exit of the first
monochromator enters a second monochromator, where it is analyzed again. With the use of the second monochromator, better stray light rejection
(i.e., more accurate wavelength separation) is achieved (134). At the exit of the monochromator there is the counting system, which is usually either a
photon counter (with an adjusted photomultiplier tube) or a charge-coupled device (CCD). The signal is typically recorded to a PC or a data logger.
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reliable satellite-based aerosol and cloud information
became available (e.g., Refs. 155, 161). Nevertheless, the
retrievals are still not sufficiently accurate over highly re-
flective terrains, mountainous sites, and highly polluted
environments (162–168), mainly because of simplifica-
tions in the algorithms and the use of climatological
data (for, e.g., surface albedo and aerosol absorption).
Furthermore, each satellite pixel represents the average
of a finite area, and the average atmospheric and sur-
face conditions in the pixel may differ significantly rela-
tive to the conditions of each point of the pixel,
especially over complex, inhomogeneous terrains (169).
Thus, under the conditions described above, ground-
based UV measurements and satellite-based estimates
may differ by 20% for cloudless skies and >50% for
cloudy skies (see for example Figure 4 in Ref. 165). For
high-quality data sets the agreement with ground-based
measurements is generally much better, within the
uncertainty of the ground-based measurements, for low

surface albedo, low aerosol, and cloudless-sky condi-
tions (e.g., Refs. 163, 165). Some of the most widely used
satellite-based climatological products are listed in
TABLE 1.
In addition to the satellite-based climatological UV

products, satellite-based forecast and nowcast services
are also available and are used for the information of the
public (e.g., Ref. 172 and references therein).

6. UV-B RADIATION AND HUMAN HEALTH

The depletion of stratospheric ozone took place in a pe-
riod when skin cancer cases in light-skinned populations
were already increasing rapidly (e.g., Refs. 173–176).
These increases resulted mainly from changes in socio-
cultural norms. Changes in style of clothing and consid-
eration of tanned rather than pale skin as a sign of

Table 1. Satellite-based climatological UV measurements

Data Set (Ref.) Products Availability Coverage
Spatial/Temporal

Resolution

Tropospheric Emission
Monitoring Internet
Service (TEMIS) (153)

Daily doses of the erythemal
irradiance

Clear-sky UV index and
erythemal dose: 1970–
present (high quality since
1979)

Clear-sky UV index and
erythemal dose: world

0.5� � 0.5� or 0.25� �
0.25�

Effective dose for the produc-
tion of vitamin D in the human
skin, effective dose for DNA
damage, clear-sky UV index

All-sky products: 2004–
present

All-sky doses: Europe Daily

OMI UV data set (154) Noontime UV index and daily
erythemal doses

2004–present Global 1� � 1�

Daily

TROPOMI UV data set
(155)

Noontime UV index and daily
erythemal doses

2017–present Global 1� � 1�

Daily

AC SAF surface UV
product (170)

daily biologically active doses,
daily maximum dose rates,
daily UV-B and UV-A radia-
tion, solar noon UV index

2007–present Global 0.5� � 0.5�

Daily

Vitt et al. (152) Noontime UV index 1983–2015 Europe 0.05� � 0.05�

Daily

Vuilleumier et al. (151) UV erythemal irradiance 2004–2018 Switzerland 1.5–2 km

Hourly

SoDa Service (171) UV-B and UV-A irradiance 2004–present Europe 5 km

15 min

AC SAF, Atmospheric Chemistry Satellite Application Facility; OMI, Ozone Monitoring Instrument; SoDa, Solar Radiation Data; TROPOMI, TROPOspheric
Monitoring Instrument.
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health and affluence are considered the main contribu-
tors to this tendency (177–179).
UV radiation causes DNA damage and the develop-

ment of somatic mutations, inflammation, oxidative stress,
and defective activity of the immune cells (180). These
events are milestones for the development of skin can-
cers. In this way, products such as 6-4-pyrimidone photo-
products (6-4PPs) and cyclobutane pyrimidine dimers
(CPDs) are formed in a wavelength-dependent manner.
Oxidative DNA damage leads to DNAmutations and con-
tributes to the formation of melanoma. Nonmelanoma
skin cancers (NMSCs), basal cell carcinoma (BCC) and
squamous cell carcinoma (SCC), are far more frequently
diagnosed types of skin cancer. The mechanism of
NMSC formation from UV radiation is direct DNA damage
and indirect DNA damage through errors in DNA repair
and reactive oxygen species as well as immune suppres-
sion (181–183). In all types of skin cancer, UV radiation
plays a crucial role in skin carcinogenesis. However, the
frequency of indexes is inversely related to skin pigmen-
tation, with higher incidence in individuals with fair skin
(184, 185).
Nowadays, exposure to UV radiation is considered a

major environmental risk factor for melanomas (186).
Approximately 75% of melanomas have been attributed
to UV overexposure. The incidence varies with the dura-
tion of UV exposure and skin sensitivity to UV radiation.
For example, this proportion of melanomas attributed to
UV radiation is lower in Canada (62%) but much higher
(96%) in Oceania (187). Potrony et al. (188) showed that an
increase of one-fold standard deviation for ambient UV
radiation during summertime is associated with a statisti-
cally significant greater melanoma risk. It has been sug-
gested that both intermittent high-dose and chronic
exposures to sunlight contribute to various forms of mela-
noma (189).
Exposure to sunlight is a known or suspected risk fac-

tor for many eye diseases also. Cataract is usually an in-
evitable side effect of aging and remains the leading
cause of impaired vision worldwide (190). Exposure of
eyes to UV radiation increases the risk of developing
cataract and is considered among the most important
environmental risk factors in different geographically
diverse populations (e.g., Refs. 189, 191, 192). Hashemi et
al. (193) analyzed 45 studies with a sample size of
161,947 and identified that the prevalence of cataracts
related to exposure to UV radiation was �8%. Rezvan et
al. (194) identified 3,255 articles and finally reviewed 68
articles with >400,000 participants from 24 countries to
determine the global prevalence for eye pterygium and
the related demographic, environmental, and lifestyle fac-
tors. The results of this study provided a more exact and
reliable value for the effect of sunlight exposure.
Exposure to sunlight was proven to be associated with

pterygium via numerous factors including time spent
outdoors, outdoor versus indoor occupations, and
wearing of sunglasses.
Extremely high UV-B levels over populated areas of

the world have been avoided because of the implemen-
tation of the Montreal Protocol (111). Nonetheless, it is
crucial to recognize the possible dangers to human
health that could be caused by severe ozone depletion.
The analyses of the “world avoided” UV levels by the
Montreal Protocol and its amendments were expanded
to the beneficial effects on health risks, mainly erythema
and skin cancers (FIGURE 5). Slaper et al. (196) simu-
lated the evolution of total ozone and first demonstrated
that successful implementation of the Montreal Protocol
would lead to an ozone minimum around the year 2000
and a peak in skin cancers of almost 10% occurring 60 yr
later. Newman and McKenzie (109) reported that, de-
spite the limitations in their modeled results and the
expected changes in atmospheric composition due to
climate change, the Montreal Protocol would have been
hugely beneficial to avoid the health risks associated
with high UV exposures. van Dijk et al. (108) inte-
grated, for the first time, results from chemistry-climate
models (CCMs) and risk models to provide a full global
scenario analysis of UV-related health risks. They
showed that with the countermeasures taken to save
the ozone layer, two million cases (a decrease of 14%)
of skin cancer would be prevented in 2030, world-
wide, with the largest effects in the United States
Southwest and Australia.
The importance of ODS emission reduction, the

corresponding increase of stratospheric ozone and
decrease of ambient UV-B, and the consequent pre-
vention of adverse health impacts were assessed by
the US Environmental Protection Agency with the
updated Atmospheric and Health Effects Framework
(AHEF) model (195). It was concluded that the Montreal
Protocol (and its future amendments) prevents �443
million cases of skin cancer, 2.3 million skin cancer
deaths, and 63 million cataract cases for people in the
United States born in the years 1980–2100. Although
many important issues remain to be explored, such as
the expansion of calculations to other geographies and
the relationship with other health effects, the impor-
tance of the Montreal Protocol and the UV radiation-
related human health impacts are profound.
The vast majority of the world’s population can be occa-

sionally exposed to extreme UV levels (197). However, the
spatial and temporal variation in atmospheric constituents
such as ozone, aerosol, and, more significantly, clouds
affects UV-B radiation reaching the ground (see sects. 7–
9). Moreover, the actual personal dose received depends
on behavior (time in the sun and amount of skin exposed).
For example, Kazantzidis et al. (198) determined the
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ambient UV in the United Kingdom and concluded that the
southern part of the country receives 1.5–2 times more UV
than the north during spring, summer, and autumn.
Moreover, even for the same latitude, regional variations
of cloudiness result in doses at coastal sites being up to
25% higher than in inland areas. Webb et al. (199) com-
bined those data with observation data (sun exposure,
diet, and vitamin D status) and UV intervention studies per-
formed with white Caucasian adults to quantify the sun ex-
posure required to meet vitamin D targets year round and
determine whether this can be safely achieved with short
exposures [resulting in a dose < 1 standard erythemal
dose (SED) (200)]. They concluded that white-skinned peo-
ple in the United Kingdom (and similar latitudes) are able
to meet vitamin D requirements by spending, from March
to September, <10 min outdoors around noontime in sea-
son-appropriate clothing. The same methodology was fol-
lowed with Fitzpatrick skin type V (brown) adults (201).
Results showed that, under the same assumptions, a 25-
min daily exposure could be adequate to meet vitamin D
requirements at United Kingdom latitudes. O’Neill et al.
(202) extended the investigation of the ambient UV-to-vita-
min D relation across several European locations and illus-
trated the limits for cutaneous synthesis of the vitamin.

According to the results, there is not sufficient solar UV
radiation to produce enough vitamin D for at least 4 mo
during the winter in Iceland, Finland, Denmark, Ireland, and
the United Kingdom. Moreover, the UV availability alone
cannot explain a population’s vitamin D status, so other
factors must be considered in seeking solutions to vitamin
D deficiency. Thus, although there is strong evidence that
UV-B exposure is a risk factor for a range of adverse health
effects, it is difficult to assess the proportion of those dis-
eases that is ascribable to UV exposure, because of a
range of complicating factors like genetics, type of skin,
diet, and lifestyle.
Beneficial effects of exposure to UV radiation are not

related only to the production of vitamin D in the human
skin (27). Exposure to UV radiation contributes to the
healing of diseases such as psoriasis, vitiligo, atopic der-
matitis, and localized scleroderma as well as to suppres-
sion of the clinical symptoms of multiple sclerosis
independently of vitamin D synthesis and the improve-
ment of cardiovascular health. Through the release of
endorphins, UV exposure contributes to the mainte-
nance of good mental health. A debate relative to the
potential beneficial effects of exposure to UV-B radiation
for the prevention of infection and/or recovery from
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FIGURE 5. United States annual incre-
mental health effects for full implementa-
tion of the Montreal Protocol as Amended
and Adjusted [World Meteorological
Organization (WMO) ozone-depleting sub-
stances (ODSs) emission scenario A1] rela-
tive to the “baseline” scenario with no
ozone depletion (1980 ozone concentra-
tions). Top: incidence by year for basal cell
carcinoma, squamous cell carcinoma, and
cataract. Bottom: incidence and mortality
by year for malignant melanoma and mor-
tality by year for keratinocyte cancer.
EESC, equivalent effective stratospheric
chlorine; pptv, parts per trillion by volume.
Reproduced from Ref. 195 under CC-BY
license.
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SARS-CoV-2 has taken place since the emergence of
the COVID-19 pandemic (203). Ambient UV-B radiation
is believed to contribute toward protection from infec-
tion or serious illness through direct inactivation of the
SARS-CoV-2 virus and through the formation of vitamin
D or other substances such as nitric oxide produced by
exposure of the skin to UV radiation that strengthen the
human immune system. Although many studies report
significant correlation between infection or mortality
rates and UV-B radiation (e.g., Refs. 37, 204–206), the
strong correlations between UV-B radiation and other
environmental parameters increase the uncertainties in
the determination of the extent to which it prevents
infection or severe illness (203).
In general, the balance between risk and benefit of

sun exposure needs to be more deeply investigated.
Since there is convincing evidence that UV exposure is
related to a risk factor for adverse health effects, the
total UV exposure as well as the proportion that can be
attributed to high or low exposure should be taken into
account. For example, Petersen et al, (207) combined
measures of simultaneous beneficial and adverse
effects (personal UV exposure, DNA damage, and vita-
min D data) in a real-life study of 1-wk sun or ski holidays.
Their results indicate that UV-B exposure doses that
caused and induced vitamin D synthesis also caused
considerable DNA damage. Similar findings were
reported for children in a similar study (208). On the con-
trary, Felton et al. (209) highlighted the importance of
low-dose summer UV exposure: it resulted in vitamin D
sufficiency in light-skinned people accompanied by low-
level and nonaccumulating DNA damage. Moreover, the
DNA damage was minimal and less vitamin D was
produced in brown-skinned people under the same
exposures.

7. FACTORS AFFECTING THE LEVELS OF UV-B
RADIATION AT THE EARTH’S SURFACE

UV-B radiation that reaches the surface of the Earth
exhibits periodical and nonperiodical changes. The for-
mer are mainly associated with periodicities in Earth-sun
relative position, solar activity, and dynamic atmospheric
phenomena. About 6.8% more solar radiation reaches
the Earth’s atmosphere at perihelion (January) than at
aphelion (July). Furthermore, the angle between the sun
and the zenith of a particular place on Earth [solar zenith
angle (SZA)] changes periodically on different time-
scales (i.e., diurnally, annually), leading to corresponding
changes in the solar radiation that reaches the surface.
Solar activity also changes periodically, in cycles with dif-
ferent periodicities (e.g., 11-, 80-, and 210-yr cycles) (210,
211). On longer timescales, astronomical cycles with

periodicities of the order of 20,000–100,000 yr
(Milankovitch cycles) slowly alter the amount of solar radi-
ation that reaches the Earth’s surface (212). Furthermore,
solar radiation that reaches the atmosphere changes
because of the 27-day apparent solar rotation. Dynamic
atmospheric processes also induce changes in the levels
of solar UV radiation that reach the Earth’s surface. For
example, the quasi-biennial oscillation (QBO) is related to
periodic changes in total ozone (9, 213, 214) and subse-
quently to UV-B radiation at the Earth’s surface (215). Life
on Earth has adapted to changes in UV-B due to the
above periodicities, which are predictable and thus can
be easily modeled.
Nonperiodic changes in surface solar UV-B radiation

are mainly related to changes in atmospheric composi-
tion and dynamics, and, in many cases, they cannot be
easily predicted. Changes in total ozone, atmospheric
aerosols, clouds, and surface albedo have been reported
to play a dominant role in the variability of surface solar
UV-B radiation (50, 123, 216–218). In FIGURE 6, projec-
tions of the past and future trends in the UV index due to
changes in different atmospheric factors are presented.
Despite the uncertainties in the magnitude of the
changes due to each factor, it is clear that over different
regions of the world the role of different atmospheric pa-
rameters was (in the past), and will be (in the future), domi-
nant. It is also evident from FIGURE 6 that there is a
strong correlation between changes due to surface
albedo and clouds (see sect. 9 for more details).
Confidence in the presented results (FIGURE 6, right) is
indicative for the level of understanding of how each fac-
tor affects UV-B radiation.

7.1. Total Ozone

A large fraction of the UV-B radiation at wavelengths
longer than 290 nm is absorbed by stratospheric ozone.
A metric that is commonly used to quantify the influence
of total ozone (or any other atmospheric constituent) on
UV-B radiation or UV-B effective doses is the radiation
amplification factor (RAF), which is defined as the per-
centage of increase in UV-B (or any UV-B effective
dose) that would result from a 1% decrease in the total
ozone (219, 220). Hereafter, the RAF due to total ozone
is referred as O3 RAF. The O3 RAF depends mainly on
the SZA. It is also affected by the initial concentration of
the considered atmospheric constituent (e.g., total
ozone) and the concentration of other atmospheric con-
stituents that are present in the atmosphere and affect
UV-B (e.g., aerosols). Effective quantities that are
affected more strongly by shorter UV wavelengths have
higher RAFs because radiation at shorter wavelengths is
affected more significantly by changes in total ozone.
Bais et al. (123) estimated that at SZA=50� the O3 RAF
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ranges between �20 and 1 for wavelengths between
295 and 315 nm, respectively. Blumthaler et al. (221)
investigated the dependence of O3 RAF on wavelength
on a mountainous, practically aerosol-free, environment
and estimated values from 2.4 to 1 for wavelengths from
305 to 315 nm at SZA=30�. Similar results were derived
by di Sarra et al. (222), who investigated O3 RAF at

different wavelengths after taking into account and cor-
recting for the effect of aerosols.
A detailed discussion of O3 RAFs for different effective

UV doses can be found in Refs. 61 and 223. For SZAs
between 0� and 50� a RAF of 1.160.1 can be used for
erythemal radiation over middle latitudes. For higher
SZAs and for very high total ozone the RAF generally

FIGURE 6. Simulated annually averaged percent changes in noontime UV index (UVI) (or erythemally weighted UV irradiance) relative to the “pres-
ent” (i.e., 2010–2020), based on multimodel averages of projections of models participating in the 5th Phase of the Model Intercomparison Project
(CMIP-5). Left: changes relative to the average 1955–1965 levels. Right: simulated changes expected from the present to the period 2085–2095.
Effects of aerosols, surface reflectivity, cloud cover, and total ozone on UVI are shown in each row, with an assessment of the confidence in UVI projec-
tions. Note the 2 different color scales. AOD, aerosol optical depth. Reproduced from Ref. 50 with permission from Photochemical and Photobiological
Sciences.
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takes lower values (FIGURE 7). The results shown in
FIGURE 7 are in agreement with the results of other
studies that also propose O3 RAFs of 1.1–1.2 for moder-
ate-ozone and low-SZA conditions under clear skies
(224–226). According to the results of the latter stud-
ies, O3 RAFs can range between 0.67 and 2 depend-
ing on the environment, the SZA, and the atmospheric
conditions.

7.2. Aerosols

The effect of aerosols has been mainly studied with
respect to aerosol optical depth (AOD). Kim et al. (226)
estimated RAFs due to AOD changes (AOD RAFs) for
erythemal radiation of 0.18–0.63 (average AOD RAF of
0.29) at Seoul, South Korea, depending on SZAs and
total ozone. Palancar et al. (225) estimated lower AOD
RAF values (again for erythemal radiation) of 0.06–0.27
(average 0.15) for C�ordoba, Argentina. However, the
effects of aerosols on UV-B also depend strongly on
their other optical properties (mainly single scattering
albedo and Ångstrom exponent), i.e., their chemical
composition and physical characteristics (50, 218, 227),
and thus vary locally and seasonally. Quantification of
the effects of aerosols at UV-B wavelengths is very diffi-
cult because of the complex interactions between

aerosols, total ozone, and radiation, which in some cases
are not completely understood (50, 228). Although aero-
sols are considered to mainly scatter and redistribute
solar radiation, particular aerosol species absorb a signifi-
cant amount of radiation at UV-B wavelengths (229, 230).
Over polluted urban environments, aerosols have been
found to absorb on average �30% of the UV-B photons
that they interact with, whereas the corresponding per-
centage for total solar radiation is usually below 10%
(231–234). Mineral dust also absorbs UV-B radiation more
effectively than radiation in the visible and infrared spec-
tral regions (235). It is noteworthy that over sites that are
strongly affected by aerosols, erythemal radiation can
exceed/be below its climatological levels even under epi-
sodes of extremely high/low total ozone when aerosol
load is very low/high (236, 237). Gaps in knowledge and
uncertainties relative to the efficiency of aerosols in
absorbing UV-B radiation, combined with the lack of sys-
tematic measurements of aerosol optical properties in
UV-B, are responsible for large biases and uncertainties
in the modeling of UV-B radiation over environments that
are strongly affected by dust and/or urban aerosols (50).
Thus, they are the main uncertainty source in clear-sky
satellite products (e.g., Refs. 160, 238, 239). Absence of
aerosols and other pollutants at high altitudes leads to a
faster increase in UV-B radiation with altitude relative to
what would be expected solely due to the exponential
decrease of atmospheric density, i.e., the reduction in
Rayleigh scattering (240, 241). As analytically discussed in
sect. 10, when aerosols from, e.g., large volcanic erup-
tions enter the stratosphere they alter the equilibrium in
the photochemistry at these altitudes, which can result in
significant ozone decreases and subsequently in very
large UV-B increases (for more information see for exam-
ple Refs. 242, 243).

7.3. Clouds

Clouds also play a key role regarding both the short-
and the long-term variability of UV-B radiation at the
Earth’s surface (50, 61, 105, 228, 244, 245). Clouds
attenuate UV-B radiation less effectively relative to radi-
ation at longer wavelengths, i.e., the cloud effect on UV
radiation is 15–45% lower than the cloud effect on total
solar radiation (246). It is noteworthy that UV-B radiation
can increase by >20% relative to its expected clear-sky
levels under broken cloud conditions due to reflections
on clouds that do not cover the solar disk (247–249).
Over high-surface albedo terrains the multiple reflec-
tions at the surface and at the bottom of the clouds can
result in enhancement of the UV-B radiation by 60% rel-
ative to weakly reflective surfaces (6, 250, 251).
Enhancement of 5–10% by clouds can also occur at
mountainous sites when clouds are at a lower altitude

SZA (deg)

100

150

200

250

300

350

400

450

500

550

600

O
zo

ne
 (D

U
)

RAF for Erythema
as a function of SZA and Ozone

0 10 20 30 40 50 60 70 80 90

FIGURE 7. The radiation amplification factor (RAF) for erythema,
calculated as a function of solar zenith angle (SZA) and total ozone.
DU, Dobson units. Reproduced from Ref. 61 with permission from
Photochemical and Photobiological Sciences.

EFFECTS OF CLIMATE CHANGE ON OZONE AND UV-B

Physiol Rev �VOL 103 � JULY 2023 � www.prv.org 1801

Downloaded from journals.physiology.org/journal/physrev (091.140.010.251) on April 25, 2023.

http://www.prv.org


(252, 253). Although scattering by clouds is generally
spectrally flat, complex interactions between clouds,
aerosols, ozone, and UV-B radiation, in addition to the
lack of systematic measurements of cloud optical prop-
erties, make the modeling of the effects of clouds a very
challenging task (254–256).

7.4. Surface Reflectivity

Over most types of land surfaces and the ocean, surface
reflectivity for UV-B is below 0.1. For snow- and ice-free
surfaces a typical value of 0.05 is commonly used for
UV-B radiation modeling. Over desert the surface
albedo in UV is higher, 0.2–0.3, and over fresh snow it
can exceed 0.9. The reflectivity of ice depends strongly
on its characteristics and the underlying surface, and for
UV it ranges from 0.2 to 0.8 (252, 257–260). Highly re-
flective terrains enhance surface solar UV-B radiation
because of multiple scattering at the surface and in the
atmosphere. Thus, the effect of surface albedo on the
levels of surface UV-B radiation depends strongly on
atmospheric composition (e.g., clouds or aerosols over
highly reflective terrains can result in further enhance-
ment). Although the effect of surface albedo on UV has
been discussed in many studies (e.g., Refs. 6, 250, 255),
modeling of UV-B radiation over highly reflective surfa-
ces is still highly uncertain (165, 168, 261) and time-con-
suming simulations with three-dimensional models are
needed to minimize uncertainties in the simulated sur-
face solar UV-B radiation over complex terrains, even
under cloudless skies and low-aerosol conditions (251,
262).

7.5. Sulfur Dioxide and Other Gases

Among atmospheric molecules, sulfur dioxide (SO2) is
the most effective absorber of UV-B radiation (e.g., Ref.
263). Nevertheless, absorption of the solar UV-B radia-
tion by SO2 is negligible compared with absorption by
total ozone because the concentration of SO2 is two
orders of magnitude lower compared with total ozone
for usual atmospheric conditions (e.g., Ref. 123).
Volcanic eruptions and forest fires can result in elevated
SO2 levels, and thus to significant absorption of solar
UV-B radiation (264–266). After volcanic eruptions,
reduction of erythemal radiation by up to 50% has been
reported due to increased levels of SO2 in the atmos-
phere (267). SO2 concentrations can also be high near
strong anthropogenic emission sources (268, 269).
Chlorine and bromine compounds and organic gases
also absorb UV-B radiation, but their role is usually less
significant relative to the role of other factors (71, 256).
Nevertheless, erythemal radiation decreases of 10–15%
have been reported in extremely polluted environments

because of combined absorption by different gases
(270).

8. TRENDS IN SURFACE SOLAR UV-B
RADIATION

Reliable UV-B (or UV-B effective dose) trends can be
derived with high-quality ground-based measurements,
which are available since the late 1980s for a few sta-
tions. Since the mid-1990s high-quality measurements
are available for more stations, but again they do not
provide global coverage (FIGURE 8). Most UV-B moni-
toring instruments are distributed at the Northern
Hemisphere’s middle and high latitudes, and very few
instruments are deployed in the tropics and the
Southern Hemisphere (50). Uncertainties in UV-B meas-
urements and the large natural variability in UV-B radia-
tion make the detection of trends a nontrivial task (271,
272).
Reconstructed UV-B data sets based on (ground or

satellite based) atmospheric parameters can be used to
study trends on wider spatial and/or temporal scales,
but they are highly uncertain mainly because of the lack
of systematic measurements of specific parameters
(e.g., aerosol optical properties, surface albedo) that
cannot be taken into account in the reconstruction, at
least without making several assumptions (50, 61, 228).
Furthermore, satellite sensors cannot accurately probe
the lowest 1–2 km of the atmosphere, and thus they sig-
nificantly underestimate the effects of air pollution and
aerosols (228). It also must be noted that trends based
on satellite products represent the average conditions
within a satellite pixel and are not necessarily represen-
tative for each point of the pixel (169). Since satellite
retrievals are very uncertain over highly reflective ter-
rains [e.g., Lakkala et al. (165)], satellite-based UV-B
trends are not available for Arctic and Antarctica.
Because of the lack of continuous, reliable measure-
ments of the total column of ozone, reconstruction of UV
series is possible only at a very few stations before
1950. Information for aerosol optical properties is avail-
able at very few stations before 1980 (50, 228).
Nevertheless, trends derived from reconstructed data
sets can provide useful information on how changes in
specific parameters have affected UV-B radiation on rel-
atively wide spatial and/or temporal scales over middle
latitudes and the tropics.

8.1. Trends Calculated with Reconstructed UV-B
Series

Herman (273) analyzed satellite-based UV-B for 1979–
2008 and detected positive trends in different UV-B
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doses over the middle latitudes of both hemispheres.
The trends were stronger for the Southern Hemisphere
in summer, of the order of 10–12% per decade for eryth-
emal irradiance at latitudes 40� S to 55� S. Similar results
were reported by Ialongo et al. (156), who reported posi-
tive trends of 0–5% per decade in erythemal irradiance
at latitudes 55� S to 55� N for 1979–2010. The trends
were again stronger over middle latitudes of the
Southern Hemisphere in spring and summer. Herman et
al. (274) calculated the trends in noon UV index for 191

specific cities distributed at latitudes between 60� S and
60� N, using OMI data for 2005–2018, and estimated
positive average (not significant) increases of �1% per
decade at southern and northern middle latitudes and
zero trends in the tropics.
Lindfors and Vuilleumier (275) reconstructed erythe-

mal UV doses for Davos over 1926–2003, using one of
the longest series of total ozone measurements globally
as well as information for sunshine duration and snow
depth. They found very large variability in erythemal
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irradiance, especially before 1980, mainly due to the cor-
respondingly large variability in sunshine duration. They
also found a positive trend in erythemal doses in 1980–
2003, which was attributed to a negative trend in total
ozone. Posyniak et al. (276) reconstructed erythemal
doses for Belsk, Poland for 1964–2014 and found posi-
tive trends of 5–6% per decade in 1974–1996 that were
attributed to decreased attenuation by aerosols and
stratospheric ozone. �Cí�zková et al. (277) investigated the
variability in erythemal radiation for Hradec Králov�e,
Czech Republic for 1964–2013 based on reconstructed
series. They estimated increases of the order of 15% per
decade in erythemal UV radiation in the 1980s and the
1990s due to a decline of �10% per decade in total
ozone. den Outer et al. (278) simulated the erythemal
irradiance for the period 1960–2006, using ground-
based measurements from eight European stations.
They found positive trends of 3–6%, which they attrib-
uted to changes in total column of ozone and cloudi-
ness. Román et al. (279) used radiative transfer
modeling and neural network techniques with inputs
from nine Spanish stations and simulated daily erythe-
mal doses for 1950–2011. They found an increase of
�6.5% in the period of study, which they attributed to
changes in total ozone. More reconstructed series are
available and have been analyzed for different sites
around the world [e.g., Svalbard, Norway (280), China
(281), Moscow, Russia (282)].

8.2. Trends Calculated with Ground-Based UV-B
Measurements

Trends that have been calculated with high-quality ground-
based measurements are more reliable than trends that
have been calculated from reconstructed series. UV-B
trends vary strongly depending on the region and the pe-
riod to which they refer. A comprehensive summary of the
erythemal irradiance trends in 1996–2018 for many sites
around the world (where high-quality spectral UV measure-
ments are available) is provided by McKenzie et al. (111).
According to their findings, erythemal irradiance appears
to be decreasing at higher latitudes of the Southern
Hemisphere and has been stable in recent years at other
locations. However, continued increases have been seen
at some middle latitude sites in the Northern Hemisphere.
The following is an effort to summarize the main findings
of recent studies for different latitudinal zones.

8.2.1. Antarctica.

Continuous UV-B monitoring under the extreme climatic
conditions of Antarctica is not an easy task. Nevertheless,
a number of UV monitoring stations are deployed and
maintained over Antarctica (e.g., Refs. 283–285) because

of the increased concern for the evolution of the ozone
levels over the continent. In a recent study (286), the
trends in erythemal irradiance at three Antarctic stations
were investigated for 1996–2018. Negative trends were
found for spring (�8% to �10%), which, however, were
not statistically significant. Since the variability in erythe-
mal irradiance is very large in spring, more measurements
are necessary to verify that ozone recovery (113, 287) is
depicted in the levels of erythemal irradiance. In particular
stations, significant negative trends of 3–4% per decade
were found for summer that were attributed to the posi-
tive trends in total ozone and/or the negative trends in
surface albedo (111, 113, 287).

8.2.2. Southern Hemisphere middle latitudes.

Reliable UV-B measurements over the southern middle
latitudes are available at very few stations (e.g., Refs.
167, 223, 288, 289). Trends in erythemal irradiance have
been calculated for the period 1996–2018 for the sites
of Lauder, New Zealand, Melbourne, Australia, and
Ushuaia, Argentina (for 1996–2010 for the latter) and
yielded insignificant small trends for all three sites (111).

8.2.3. Tropics.

People living or visiting tropical areas can be exposed to
very high UV-B doses (290), and extremely high UV-B
levels have been recorded at high-altitude tropical sites
(291). Nevertheless, the number of UV-B monitoring sta-
tions over these latitudes is again very small (e.g., Refs.
288, 292). The only tropical site where high-quality
spectral UV-B measurements are available for more
than two decades is Mauna Loa, Hawaii, where UV has
been continuously monitored since 1995 (292). Analysis
of erythemal UV doses for Mauna Loa in 1996–2018 did
not show any significant trend (111).

8.2.4. Northern middle latitudes.

Despite the increasing trends of upper stratospheric
ozone over Northern Hemisphere middle latitudes since
the mid-1990s, recent studies report increasing trends in
UV-B irradiance, which in most cases are related to
changes in clouds and/or aerosols (e.g., Refs. 166, 293).
Over polluted urban sites, erythemal irradiance can be
under/over its climatological levels even under extremely
low/high total ozone, because of very high/low aerosol
loads (236, 237). Over Rome, Italy decreasing trends in
total ozone in 1996–2020, possibly related to decreasing
lower stratospheric ozone, were found to induce positive
trends in UV-B irradiance at 307.5 nm. The latter were
statistically significant in April (2–5%), depending on the
SZA (294). Recovery of upper stratospheric ozone
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generally leads to positive total ozone trends over north-
ern middle latitudes, which was found to induce statisti-
cally significant decreases in spring and summer
erythemal doses during 1995–2015, of about �10% per
decade at Chilton, United Kingdom (295, 296). Positive
trends in UV radiation for different periods between 1995
and 2020 due to decreases in clouds and/or aerosols
have been reported in many more studies (166, 293,
297–301).

8.2.5. The Arctic.

Whereas total ozone recovery has been reported for
Antarctica (113, 114), this is not the case for the Arctic. The
large year-to-year variability in total ozone over the
Arctic (e.g., Refs. 302–304) currently does not allow
the detection of statistically significant trends. Although
studies reporting trends for 1995–2011 reported nega-
tive UV-B trends due to ozone recovery (305), analysis
of extended data sets (including measurements for
more years after 2011) reveals insignificant UV-B trends
over the Arctic (166, 306). In the latest report of the
Norwegian Institute for Air Research (NILU) (306), insig-
nificant trends in total ozone and erythemal irradiance
were estimated for different Norwegian stations cover-
ing latitudes between 60� N and 79� N for 1998–2020
(for total ozone) and 1995–2020 (for erythemal irradi-
ance). Changing cloudiness and surface albedo condi-
tions (related to climatic changes) have been also
reported to affect the long-term UV-B changes in the
Arctic. For example, Bernhard (307) calculated trends of
�10% to �14% in October at Barrow, Alaska, for 1991–
2011, that were mainly driven by changes in surface
albedo.

9. UV-B IN THE FUTURE

Future changes in surface solar UV-B radiation will be
mainly driven by changes in ozone, cloud cover, aero-
sols, and surface albedo (e.g., Ref. 228). Changes in the
levels of the factors described in sect. 7 are not inde-
pendent of each other (308), which complicates the
description of the transfer of UV-B radiation in the
atmosphere, and subsequently the projections of
the future UV-B levels, especially in the context of global
climate change (FIGURE 9). For example, reduced sur-
face albedo due to sea ice melting would result in more
evaporation, and thus more clouds. More clouds would,
however, block solar radiation, resulting in lower surface
temperatures. Increased surface temperatures would
generally result in increases in aerosol load (e.g., Refs.
309, 310), which would again result in increased cloudi-
ness. Changes in UV-B (e.g., decreased UV-B due to

stratospheric ozone recovery) that reaches the surface
would also affect the levels of tropospheric ozone (e.g.,
less UV-B would result in less tropospheric ozone). The
future levels of UV-B radiation and/or UV-B effective
doses have been estimated in a few studies using radia-
tive transfer model simulations with input parameters
derived from global climate models. In this section we
provide a summary of the results of these studies.

9.1. UV-B Irradiance

Simulations of the future levels of surface solar UV-B
irradiance have been discussed in the study of
Watanabe et al. (311), who used the radiative transfer
code (mstrnX) of MIROC-ESM-CHEM (312) with inputs
from the same Earth-System model. This study was the
first that considered combined changes in total ozone,
aerosol, clouds, and surface albedo. They performed sim-
ulations for 1960–2100 and for two different future socio-
economic scenarios representing different evolutions of
the GHG concentrations: Representative Concentration
Pathway (RCP) 4.5 (moderate scenario assuming peak
emissions in 2040 and reduction thereafter) and RCP 8.5
(extreme scenario assuming that emissions continue to
rise through the 21st century) (308). They showed that
UV-B would increase (relative to 2000) over northern
middle latitudes until the end of the century, by up to 10%
over Europe and the United States and 20% over East
Asia, because of reductions in aerosols and clouds that
would overcompensate for the effect of ozone recovery.
Large reductions, of 10–20%, were projected for high lati-
tudes of both hemispheres because of the combined
effects of increased total ozone increase and decreased
surface reflectivity and cloudiness. In a study focused on
UV-B changes over the Arctic Ocean (300), decreases of
10–30% in monthly UV-B relative to the 1950s levels were
projected for northern high latitudes. According to the
same study, absence of sea ice in the future would result
in more than eight times higher monthly average levels of
UV-B in the water over specific regions.

9.2. Erythemal Doses and Effective Doses for the
Production of Vitamin D

The most commonly used parameter for assessing
future evolution of the biological effects of UV radiation
on human health is erythemal UV irradiance. The future
evolution of clear (i.e., cloudless)-sky erythemal UV irra-
diance at local noon has been investigated in the stud-
ies of Hegglin and Shepherd (313) and Tourpali et al.
(314). Both studies did not consider changes in aero-
sols, clouds, or surface albedo. Their results showed
that surface erythemal irradiance would decrease glob-
ally until the end of the twenty-first century, more
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strongly over higher latitudes, because of the recovery
of total ozone.
Bais et al. (315) updated the results of Tourpali et al.

(314), again using chemistry-climate model (CCM) simula-
tions and parameterizations considering the effects of
clouds. They concluded that erythemal UV irradiance
would likely return to its 1980 levels by the first quarter
of the twenty-first century in the northern middle and
high latitudes and 20–30 yr later in the southern mid-
dle and high latitudes. After reaching the 1980 levels, it
would continue to decrease toward 2100 in the Northern
Hemisphere, whereas in the Southern Hemisphere it is
highly uncertain whether the erythemal UV radiation
would reach its 1960s levels by 2100. In the tropics, UV
changes would be small and the erythemal UV radiation
would remain roughly at 1980s levels or even higher by
2–3%. Nevertheless, the projections by Bais et al. (315)
also did not consider changes in aerosols and surface
albedo.
Another study (316) considering changes in clear-sky

erythemal and vitamin D effective doses over Europe
reported small reductions, of a few percent, in both

quantities from 2006 to 2100, which were attributed to
ozone recovery and reduction in aerosol optical depth.
Changes in erythemal and vitamin D effective doses
over the Arctic were studied by Fountoulakis and Bais
(317), again for RCP 4.5 and RCP 8.5. They reported
large decreases, larger by �10% for RCP 8.5, locally
reaching�30% for the noon UV index and�50% for the
noon effective UV dose for the production of vitamin D
(hereafter referred as vitamin D dose) in April, which
were attributed to the combined effects of changes in
surface albedo, cloudiness, and total ozone.
Bais et al. (50) provided updated projections of the

erythemal irradiance on a global scale taking into consid-
eration the simulations of all available Global Climate
Models (GCMs) that participated in the 5th Phase of the
Model Intercomparison Project (CMIP-5) for the most sig-
nificant factors affecting erythemal radiation such as
cloud cover, ozone, surface reflectivity, and aerosols and
for the moderate socioeconomic scenario RCP 4.5. The
results showed that ozone would continue to be the dom-
inant factor affecting the UV changes over Antarctica,
whereas clouds and surface reflectivity would dominate

FIGURE 9. Conceptual representation of the interactive effects of changes in greenhouse gases (GHGs) and ozone-depleting substances (ODSs) on
climate and solar UV-B radiation at the Earth’s surface. Increases of ODSs in the atmosphere have led to stratospheric ozone depletion and the ozone
“hole.” Actions prompted by the Montreal Protocol have resulted in decreasing ODSs and have helped to avoid large increases of solar UV-B radiation
that would otherwise have occurred by the middle of the 21st century. Continued emissions of GHGs (e.g., carbon dioxide, methane, and nitrous oxide)
will change the climate and will also modify the recovery of stratospheric ozone, which is expected from decreasing concentrations of ODSs. Climate
change will also affect clouds, surface reflectivity at high latitudes, where changes in sea ice and snow cover are expected, and aerosols near the
Earth’s surface. The combined effects of changes in ozone, aerosols, clouds, and reflectivity will determine future levels of UV-B radiation at the Earth’s
surface. Reproduced from Ref. 228 with permission from Photochemical and Photobiological Sciences.
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the changes over the Arctic. Although very uncertain, the
effects of aerosols would probably dominate changes
in erythemal irradiance over highly populated regions.
Changes over the tropics were generally small and
uncertain.
More recent estimates of future changes in erythemal

irradiance were presented in a study in which changes
in total ozone, surface reflectivity, and clouds according
to the RCP 6.0 scenario were taken into account (228).
FIGURE 10 shows the average differences (in %) in
noontime UV index from the period 2010–2020 to the
period 2085–2095. The projected changes are sensi-
tive to latitude and season. Large decreases in the noon-
time UV index are projected at polar latitudes (>60�

north and south). UV index decreases of >30% in
October and >10% in January were estimated for
Antarctica, which would be entirely due to the projected
recovery of ozone. The picture is similar for the northern
high latitudes, but with smaller decreases that in addi-
tion to total ozone are also partially attributed to
changes in surface albedo. For the southern middle lati-
tudes, the changes in the UV index are mostly negative,
up to about �20%, and similar across seasons, whereas
their spatial variability is large. Increases in stratospheric
ozone and changes in cloudiness are major contributors
of changes over these latitudes. There is a large spread
in the UV index changes over the tropics, mainly

because of the large spread of the effects of aerosols,
with increases that exceed 20% over regions that are cur-
rently highly affected by aerosols. Over the northern mid-
dle latitudes the UV index increases, locally by up to 40%,
mainly because of decreases in aerosol optical depth.
Changes in cloudiness can be very large over different
regions of the world, though they are highly uncertain.

9.3. Other Biologically Effective Doses

The number of studies reporting future changes in quan-
tities other than UV-B, erythemal irradiance, and the
effective dose for the production of vitamin D are very
limited. Kazantzidis et al. (318) investigated how five dif-
ferent UV dose rates would change in the future under
cloud-free skies because of changes in total ozone on a
global scale. They simulated erythemal doses (53),
effective doses for DNA damage (48), effective doses
for plant damage (319), effective doses for Skin Cancer
Utrecht-Philadelphia-human (SCUP-h) (320), and vitamin
D doses (67). Changes in aerosols were not taken into
account in this study. The results for the southern polar
latitudes showed that the DNA damage and vitamin D
dose rates would decrease by �62% and 53% in the
2070s relative to the mean of the period 1996–2005,
whereas the erythema and SCUP-h dose rates would
decrease by �40%. The maximum reduction in all dose

FIGURE 10. Monthly averaged percentage changes in noontime UV index (UVI) from 2010–2020 (present) to 2085–2095 (end of 21th century), as
have been calculated from chemistry-climate model (CCM) simulations [Representative Concentration Pathway (RCP) 6.0 scenario] for 4 indicative
months (January, April, July, and October), taking into account the effects from changes in total ozone, surface reflectivity, aerosol optical depth (AOD),
and cloud cover. For each month, the individual changes in UVI due to changes in each of these parameters have been estimated while keeping the
others constant. Note the different color scale for each individual parameter. Reproduced from Ref. 228 with permission from Photochemical and
Photobiological Sciences.
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rates at the Southern Hemisphere was almost double
that of those at the Northern Hemisphere. At lower lati-
tudes the estimated differences were generally smaller,
decreases of <15% for middle latitudes and changes of
the order of65% for the tropics.
In view of future increases in GHGs under RCP emis-

sions scenario 6.0, Eleftheratos et al. (321) assessed the
trends in DNA-damaging UV irradiance by using model-
ing, measurements and a thorough analysis, and discus-
sion on complex atmospheric feedbacks and effects.
The analysis compared trends in DNA-active UV irradi-
ance at high latitudes with respective trends in the near-
global mean. The key outcome was that DNA-active UV
irradiance is expected to change differently at high lati-
tudes than at near-global scale after around 2050. It will
continue to decline at high latitudes mainly because of
stratospheric ozone recovery from the reduction of
ODSs (cloud cover changes are not significant), whereas
it is expected to increase on a near-global scale,
affected by greenhouse (GHG)-induced reductions in
cloud cover and total ozone. It was also shown that
decreasing surface albedo in the second half of the

twenty-first century has a significant influence on the
surface UV radiation at high latitudes.
FIGURE 11 shows the changes in total ozone, DNA-

active UV irradiance, and cloud cover from model simula-
tions and measurements averaged at four southern high-
latitude stations (Ushuaia, Palmer, Arrival Heights, and
South Pole). It was estimated that total ozone will increase
by 4.2 6 2.1% from 2050 to 2100 (P value=0.049), DNA-
active UV irradiance will decrease by 4.8 6 2.9% (P
value=0.103), and cloud cover will decrease insignifi-
cantly by 1.16 1.7% (P value=0.548).
A similar picture with increasing ozone and decreasing

DNA-harmful UV irradiancewas presented for the northern
high latitudes, but a completely different picture was found
for the changes in the near-global mean. Here, the DNA-
harmful UV radiation was shown to increase after 2050
because of decreasing cloud cover and decreasing total
ozone associated with increasing GHGs. The results for
the near-global mean were based on 13 station averages
with contributions mainly from the middle latitudes, but a
separate analysis using large-scale zonal means confirmed
the findings of the station averages. The downward trend

FIGURE 11. Changes in total ozone (top), DNA-active UV irradiance (middle), and cloud cover (bottom) averaged at 4 UV stations in the southern high
latitudes (Ushuaia, Palmer, Arrival Heights, and South Pole) from chemistry-climate model (CCM) simulations for 1960–2100. A: simulation REF assumes
increasing greenhouse gases (GHGs) [Representative Concentration Pathway (RCP) 6.0]. B: simulation FIX assumes constant GHGs at 1960 levels. C
shows the difference between REF and FIX, as an indicator of the impact of increasing GHGs. y-Axes in A and B show averages (in %) calculated from
deseasonalized monthly data. All data were deseasonalized with respect to the period 1990–2019. For the southern high latitude stations, the average
refers to the average of monthly anomalies from September to March. GB, ground based; MODIS-Terra, MODerate-resolution Imaging
Spectroradiometer (MODIS) Terra; SBUV, solar backscattered ultraviolet. Reproduced from Ref. 321 under CC-BY license.

ZEREFOS ET AL.

1808 Physiol Rev �VOL 103 � JULY 2023 � www.prv.org

Downloaded from journals.physiology.org/journal/physrev (091.140.010.251) on April 25, 2023.

http://www.prv.org


in cloud cover was attributed to growing anthropogenic
GHGs, which are responsible for fewer clouds in middle
latitudes as has been shown by Norris et al. (322) and are
capable for breaking up stratocumulus clouds into scat-
tered clouds under greenhouse warming (323). The down-
ward trend in total ozone was associated with decreasing
ozone trends in the lower stratosphere due to increasing
GHGs (324). FIGURE 12 presents the results for the near-
global mean based on results from 13 station averages.
Application of a multiple linear regression statistical

model to quantify the contributions of total ozone and
cloud cover to the DNA-active UV irradiance after 2050
showed that the primary parameter for determining the
UV radiation change at high latitudes is total ozone,
accounting for �50% of the predicted trends in DNA-
active UV irradiance. For stations averaged between
50� north and south, it was estimated that �33% of the
predicted DNA-active UV trend is caused by trends in
ozone and�41% by trends in clouds.

10. GAPS IN KNOWLEDGE AND CHALLENGES

After the agreement of the Montreal Protocol, there has
been a lot of progress toward the quantification of the

biological effects of solar UV-B radiation and toward
understanding of the interactions between solar UV-B
radiation and atmospheric constituents. Nevertheless,
there are still many open questions, and, more signifi-
cantly, despite the projected stratospheric ozone recov-
ery, the evolution of surface solar UV-B irradiance in the
future is far from certain.

10.1. Uncertainties in the Estimation of Biological
Effects

Personal exposure depends on many parameters, and
even the highest-quality ground-based UV measure-
ments are not generally enough to quantify personal ex-
posure. First, ground-based monitoring UV networks are
constituted of instruments that are usually deployed in
standard locations and are not representative of every-
day personal exposure. Second, irradiance at the short-
est UV-B wavelengths that reach the Earth’s surface
usually contributes most to human health-related effec-
tive UV-B doses. At such wavelengths, the low signal-to-
noise ratio and difficulties in calibration and characteri-
zation procedures induce high uncertainties, [1-fold
uncertainties of the order of 5–10% (139, 145)]. Lack of
systematic calibration and maintenance may further

FIGURE 12. Same as FIGURE 11 but for 13 UV stations averaged between 50� N and 50� S. y-Axes in A and B show annual averages (in %) calculated from
deseasonalized monthly data. C: differences between A and B. The annual average was calculated from all monthly anomalies. GB, ground based; MODIS-
Terra,MODerate-resolution ImagingSpectroradiometer (MODIS) Terra; SBUV, solar backscatteredultraviolet. Reproduced fromRef. 321 underCC-BY license.
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increase the uncertainty (135). Furthermore, ground-
based UV sensors measure the total irradiance that
reaches a horizontal surface. Nevertheless, information
about the directional distribution of solar radiation is
necessary to model personal exposure more realisti-
cally. However, accurate and systematic measurements
of the directional distribution of solar UV radiation are
not widely available. Buildings, trees, or other obstacles
(e.g., buildings forming man-made canyons in the cities)
reduce the sky view and alter the radiation incident on a
person andmay reduce personal UV exposure noticeably
(325, 326). Even at low SZAs a large fraction of the eryth-
emal UV radiation received by a person is diffuse (i.e.,
photons that have been scattered in the atmosphere) and
thus, even if the direct solar beam is not obscured, reduc-
tions due to obstacles can be significant.
For the same reason, protection from UV radiation

cannot be achieved by only blocking the direct beam
without also obstructing a large fraction of diffuse sky-
light. The effect of the orientation of obstructions on the
exposure of a human with vertical posture to effective
UV doses for vitamin D production was calculated for
urban locations (326). In a typical mid-latitude urban
area where 40% of the sky is hidden by obstructions, it
was found that the exposure of a human model with win-
ter clothing in spring depends on the orientation of the
model to the sun and can vary by up to 25%. For the
same conditions, it was found that obstructions from
vegetation and buildings can reduce the exposure of a
human with winter clothing walking around lunch time
by 40%.
Exposure time is also critical for total personal expo-

sure. Exposure to UV-B sunlight without protection
throughout a summer’s day at a typical mid-latitude site
can result in exposure to >30 maximum erythemal
doses (MEDs) (327). Nevertheless, personal exposure
times are generally much shorter. Exposure times also
vary significantly among individuals (sect. 6) as well as
with location and time (e.g., Refs. 328, 329).
Furthermore, there are still nonnegligible uncertainties

in the human health-related biologically active spectra.
For example, the contribution of irradiance with wave-
lengths beyond 400 nm to the induction of erythema in
human skin has not been quantified yet. The action
spectrum for the production of vitamin D in the human
skin is also controversial (63, 330). The action spectra
for various types of skin cancer in humans are also not
accurately defined, and it is very difficult to obtain more
accurate spectra (e.g., Ref. 331).
The depletion of stratospheric ozone initiated the

deeper investigation to understand the health risks and
benefits of UV-B exposure. The consequences of over-
exposure to solar UV-B radiation, such as high rates of
skin cancer, are expected to continue in the future

because of the time lag between actual exposure and
the appearance of adverse effects (332). Locally, lower
levels of UV radiation in the future may result in receiving
less of the current benefits. In contrast, longer-time expo-
sure to smaller UV-B doses, without the risk of sunburn,
contributes toward gaining more benefits of sun expo-
sure (203). The biological significance of ambient UV
should be carefully studied and addressed in biomedical
studies for specific regions that are facing or expected to
experience increasing levels of UV radiation.

10.2. Uncertainties in the Future Evolution of UV-B

Despite the successful implementation of the Montreal
Protocol and the evidence for recovery of the strato-
spheric ozone layer, the future evolution of the levels of
UV-B radiation at the Earth’s surface is highly uncertain.
An article dedicated to the uncertainties in the future
evolution of surface solar UV-B levels has been recently
published in a book for the 35th anniversary of the
Montreal Protocol (333). Below, we provide a summary
of the main uncertainty factors based on that article.

10.2.1. Future evolution of stratospheric ozone.

Although recent studies report increasing total ozone
trends over Antarctica (e.g., Ref. 113) and over some
locations at northern middle latitudes since the mid-
1990s (e.g., Ref. 166), it is still not certain that ozone will
return to its past levels before massive emissions of
ODSs in the following decades.

10.2.1.1. DECREASING LOWER STRATOSPHERIC OZONE.
Recent studies report that although ozone at the upper
stratosphere has been increasing since the mid-1990s
as a result of reduced emissions of ODSs (e.g., Ref. 334),
lower stratospheric ozone is decreasing at middle and
low latitudes (335–339). Lower stratospheric ozone
decrease partially or fully counterbalances the increase
in upper stratospheric ozone. Although the processes
that drive the negative trends in lower stratospheric
ozone are not completely understood yet, it is believed
that they are dynamically driven (340). Over Rome, Italy,
decreases in lower stratospheric ozone dominated over
increases in upper atmospheric ozone in 1996–2020,
resulting in an overall negative trend in total ozone and
subsequently in statistically significant positive trends in
307.5-nm irradiance (294). The authors also found a sig-
nificant negative correlation between the variability in
total ozone and the tropopause height. This link has
been already discussed in several studies (e.g., Refs.
341–343). Warming of the troposphere due to increasing
GHG concentrations in the future would induce eleva-
tion of the tropopause to higher altitudes (e.g., Refs.
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344, 345), which would subsequently lead to reduced
stratospheric ozone and increasing surface solar UV-B
irradiance.

10.2.1.2. STRONG ARCTIC POLAR VORTICES. The winter-
time boreal polar vortex is usually weaker and more per-
turbed than the polar vortex over Antarctica, and
stratospheric temperatures are higher compared with
temperatures in the Antarctic during austral winter (346).
Every 3–5 yr dynamic conditions favor unusually strong,
cold, and persistent Arctic polar vortices that result in
extremely low levels of total ozone in early spring (302,
347). Such events also affect springtime ozone over mid-
dle latitudes of the Northern Hemisphere (304, 348). Low
total ozone can then result in UV-B irradiance levels
above climatological averages over the Arctic (349) and
over the Northern Hemisphere’s middle latitudes (304).
The relative role of dynamic processes in determination
of Arctic springtime ozone is expected to become more
important (350). Changes in the frequency of such events
would affect total ozone and UV-B irradiance over the
Northern Hemisphere’s middle and high latitudes. Low-
ozone episodes that last for a few days and that are asso-
ciated with synoptic weather systems can also take place
over limited geographical areas at middle latitudes (351)
and can affect the levels of UV-B irradiance.

10.2.1.3. ACCELERATED BREWER–DOBSON CIRCULATION.
Increased levels of GHGs in the atmosphere lead to
warming of the troposphere and cooling of the strato-
sphere. Stratospheric cooling results in accelerated
ozone production. Annual mean Brewer–Dobson circu-
lation (for more information see Ref. 352) has been
accelerating since 1980, with a relative strengthening of
�1.7% per decade (353). In the future, ozone superre-
covery is projected to lead to ozone levels that will
exceed the pre-CFC era levels (117, 354, 355) and to less
UV-B at the surface. However, there is a large spread in
the projections of different models relative to the evolu-
tion of the Brewer–Dobson circulation in the future
(356), which confirms that more in-depth understanding
of the processes that drive these changes is necessary.
Reduced CFC concentrations due to the implementation
of the Montreal Protocol would counterbalance part of
the Brewer–Dobson circulation enhancement due to the
increase in other GHGs, especially at the Southern
Hemisphere, since CFCs are among the gases that have
a significant contribution to the acceleration of the
Brewer–Dobson circulation (353).

10.2.1.4. NONCOMPLIANCE WITH THE MONTREAL
PROTOCOL AND UNCONTROLLED ODS EMISSIONS.
Trichlorofluoromethane (CFC-11) is one of the most sig-
nificant ODSs that still contribute to the distraction of

stratospheric ozone (CFC-11; Ref. 357). Concentrations
of CFC-11 had been declining significantly since the
implementation of the Montreal Protocol, but between
2012 and 2018 unexpected deceleration in the rate of
decline was observed because of unreported produc-
tion (358–362). If this unreported production were sus-
tained it would delay the recovery of stratospheric
ozone and would also imply unauthorized dichlorodiflu-
oromethane (CFC-12) coproduction. Unreported CFC-11
emissions, however, have been limited drastically since
2019 (363). Nevertheless, emissions of uncontrolled
short-lived anthropogenic ODSs such as methylene
chloride (CH2Cl2) and chloroform (CHCl3) have been
increasing in the atmosphere in recent years, whereas
further increase in the emissions of natural ODSs such
as chloromethane (CH3Cl) and bromomethane (CH3Br)
could emerge as a consequence of climate change
(360), increasing the uncertainties relative to the recov-
ery of total ozone and the evolution of surface solar UV-
B radiation in the future.

10.2.1.5. VOLCANIC ERUPTIONS. Extremely low levels of
total ozone can induce very high levels of surface solar
UV-B irradiance over wide regions of the globe after vol-
canic eruptions (364, 365). This is because of the accel-
erated destruction of stratospheric ozone due to
heterogeneous chemical reactions on surfaces of vol-
canically produced stratospheric aerosol particles (242,
366). For example, the Erebus volcano, located on Ross
Island, Antarctica, emits gases that enter the strato-
sphere and contribute to the depletion of Antarctic
ozone, decelerating its recovery. Tropical volcanic erup-
tions in preindustrial years could have been responsible
for extremely low ozone levels in the tropics, the Arctic,
and Antarctica and increases of 80–400% in biologically
active UV irradiance over the same areas (367). About
74,000 yr ago there was a sharp decrease in human
population that has been attributed to the eruption of
the Toba supervolcano located in Lake Toba in Sumatra,
Indonesia. It is estimated that the Toba eruption sup-
pressed ozone production in the tropics and induced
decreases of the order of 50% in columnar ozone that
subsequently led to extremely high levels of surface
solar UV-B radiation. The extreme UV-B radiation and
the intense volcanic winter are the most likely explan-
ations for the decrease in human population (243).
Volcanic eruptions of similar magnitude in the future
could be catastrophic for the ozone layer (368), caus-
ing large increases in UV-B.

10.2.1.6. SEVERE WILDFIRES. When wildfire smoke
enters the stratosphere, it can also perturb stratospheric
gas composition and enhance ozone destruction.
Enormous amounts of biomass burning aerosols were
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injected into the stratosphere during the 2019–2020
Australian wildfires. A record-breaking ozone hole over
Antarctica was observed in September–November
2020 because of smoke that rose to altitudes exceed-
ing 30 km (369, 370). Extremely low ozone levels
resulted in 20-yr record-breaking levels of UV-B irradi-
ance at the northern tip of the Antarctic Peninsula
(371). Severe wildfires are projected to become more
intense and more frequent in the future (372), with cor-
respondingly growing impacts on global ozone and
UV-B irradiance.

10.2.2. Changes in air quality and climate.

Combined changes in air quality (e.g., aerosol amount
and properties, concentration of air pollutants) and cli-
mate (e.g., surface reflectivity, clouds, climate-driven
changes in ozone and aerosols) have significantly
affected the long-term variability in surface solar UV-B
irradiance in the last three decades (sect. 8) and are also
expected to play a very significant role in the future (50,
228). Aerosols and clouds are two of the main uncer-
tainty factors in the simulations of global climate models,
and their interactions with solar radiation, especially in
the UV-B region, are not completely understood (373),
which further increases the uncertainty in the projec-
tions of the future levels of surface solar UV-B irradi-
ance. Although aerosols mainly scatter solar radiation,
species such as soot, mineral dust, black carbon, and
brown carbon absorb a significant fraction of UV-B radi-
ation (e.g., Ref. 50). Whereas in the case of soot and
black carbon the absorption efficiency is spectrally flat,
mineral dust and brown carbon absorb UV-Bmore effec-
tively than radiation at longer wavelengths. Although
brown carbon aerosols play a significant role over pol-
luted urban environments, there are large gaps in knowl-
edge relative to the spectral structure of their optical
properties (e.g., Ref. 230) and subsequently in the
description of their effects in radiative transfer algo-
rithms. Interactions between clouds and aerosols and
their impact on UV-B radiation are also not completely
understood yet (50, 228). In addition to the anthropo-
genic changes in air quality and climate, there are slowly
varying natural modes of climatic variability that may
affect UV-B in the future (e.g., Refs. 374, 375) and have
not been extensively investigated (376).

10.3. Challenges in UV-B Monitoring

Significant progress has been achieved in the last 40
years relative to UV-B monitoring instrumentation and
techniques. Nevertheless, accurate, high-quality UV-B
monitoring is performed in a limited number of monitor-
ing sites. In the last decade most political bodies and

governments considered that there was no possibility of
very high UV-B levels in the future after the success of
the Montreal Protocol, which, however, is not true. In
addition to this misconception, economic and political
instabilities in many countries led to cuts in the funding
for ground-based UV-B monitoring. Many stations were
closed, whereas others provide measurements of qual-
ity that is below the desired standards (e.g., Ref. 135)
because of inadequate calibration and maintenance of
the sensors. Satellite-based UV-B monitoring has been
improved, but it is still very uncertain, especially over
areas of great interest such as polar and Alpine regions
and areas that are strongly affected by tropospheric pol-
lution and dust aerosols (e.g., Ref. 165). Thus, mainte-
nance and support of the existing UV-B monitoring
networks and funding of UV-B related research are nec-
essary not only for the study of time series and the accu-
rate detection of trends but also for the continuous
validation and improvement of satellite products.

11. CONCLUSIONS

This review is focused on the significance of solar UV-B
radiation for humans, the main factors that control its lev-
els on the Earth surface, and its present and future vari-
ability. The main conclusions are summarized in the as
follows:

• The exposure to UV-B radiation is related to risks and
benefits for human health. Globally, UV-B radiation is
considered as the primary environmental risk for non-
melanoma skin cancer. Other important adverse
effects include melanoma skin cancer and eye cata-
ract. Moreover, exposure to UV-B radiation is neces-
sary for the production of vitamin D in the human skin.
The balance between risk and benefit of sun exposure
needs further research.

• Variability in UV-B radiation depends significantly on
many factors, in addition to total ozone. Thus, over
specific locations, trends in surface solar UV-B radia-
tion in the past three decades were found to be
mainly related to the variability in aerosols, clouds
and surface reflectivity.

• In the future, man-made climate change is expected
to play a major role in the evolution of the levels of
UV-B radiation, despite the expected recovery of
total ozone. Decreased cloudiness over northern
mid-latitudes due to climatic changes would allow
more UV-B to reach the Earth surface. Large
decreases up to 30–50% (in spring and in autumn)
in the monthly levels of biologically weighted UV-B
doses are expected over northern high latitudes
due to combined changes in surface albedo and
cloudiness.

ZEREFOS ET AL.

1812 Physiol Rev �VOL 103 � JULY 2023 � www.prv.org

Downloaded from journals.physiology.org/journal/physrev (091.140.010.251) on April 25, 2023.

http://www.prv.org


• Transient volcanic interferences can reduce total
ozone amounts over large areas on Earth and result
in increased global UV-B levels at the ground.

• Satellite- and ground-based monitoring of surface
solar UV-B radiation should continue for accurate
and on-time detection of transient elevated UV-B
episodes and trends.

• Despite the positive total ozone trends recorded in
the last 30 years over many regions in the world due
to the implementation of the Montreal Protocol and
the full recovery of stratospheric ozone expected by
the mid-2060s, evolution of UV-B has additional
uncertainties in view of the interference of clouds
and aerosols, whose variability in space and time
depends on man-made climate change.

• It is recommended that the usual precautionary meas-
ures to protect from excess exposure of humans to
solar UV-B radiation should continue to apply in the
decades to come.
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