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Abstract
Background  Immunotherapy has significantly improved cancer treatment. However, it is not effective in all cancer 
patients, rendering the need to further delineate the differences among responders and non-responders at the 
molecular and cellular level. Unresponsiveness to immunotherapy has been attributed to dysfunctional immune cell 
states such as T-cell exhaustion and anergy, whereas the contribution of cellular senescence remains elusive. Herein, 
we have investigated the role of immune cell senescence in the response to checkpoint inhibitors in melanomas 
where these immunotherapies are applied as a first line treatment.

Methods  Two senescence detecting complementary approaches were utilized in a case control study we 
conducted. First, we implemented a senescence molecular signature we developed, termed "SeneVick", 
retrospectively in a single cell RNA-seq dataset from melanoma patients who received immunotherapy. Prior to this 
analysis, the signature was extensively validated in a variety of cell/tissue contexts, senescence types and species. 
Second, cellular senescence was assessed via an established experimental algorithmic approach in circulating 
immune cells of an analogous melanoma clinical cohort.

Results  Melanoma patients who did not respond to immunotherapy exhibited increased cellular senescence 
in the CD8 + T-cell, CD4 + T-cell, B-cell (CD19 + /CD20 +) and NK cell compartments compared to responders. This 
phenomenon was independent of patients’ clinical features (age, sex, melanoma type, stage) and not an outcome 
of immunotherapy, in contrast to conventional anti-cancer treatments. Interestingly, alterations of cell-to-cell 
interactions among the immune sub-populations in non-responders compared to responders were identified, 
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Background
Following its initial discovery by Hayflick and Moorhead 
more than 60  years ago, as "aging at the cellular level", 
noteworthy advancement has been achieved towards 
characterizing a cellular stress response mechanism 
that is  distinct from the aging process, termed cellular 
senescence [1]. Physiologically and on a transient basis, 
senescence acts as a homeostatic mechanism, limiting 
the propagation of damaged cells in tissues. In contrast, if 
senescent cells are not timely eliminated by the immune 
system, they persist and accumulate, resulting in detri-
mental outcomes such as age-related pathologies and 
aging [1].

For many years, a major drawback in the senescence 
field was the absence of reliable markers to effectively 
recognize senescent cells [2]. Identification of senes-
cence relied mainly on the Senescence-Associated 
β-Galactosidase (SA-β-Gal) method, which is appli-
cable only in cell culture and prone to false outcomes 
[3, 4]. Moreover, other indirect and non-specific senes-
cence markers were commonly applied. Overall, these 
approaches often resulted in misleading conclusions [5]. 
In order to bypass these obstacles, we and others recently 
proposed a senescence detecting algorithm (SDA) that 
increases the sensitivity and specificity of senescence 
identification. It also allows for its accurate verification 
in any kind of biological sample, including formalin-fixed 
and paraffin-embedded (archival) material [1, 4]. An 
essential component of SDA is the detection of lipofus-
cin, a hallmark and a common denominator of all senes-
cent cells [1, 4, 5].

The implementation of SDA retrospectively in clini-
cal samples unveiled that cellular senescence is impli-
cated in various pathologies such as cancer, COVID-19 
disease, and giant cell arteritis (GCA), denoting that its 
role in the pathophysiology of human diseases largely 
remains encrypted and overlooked [1, 6–8]. Interest-
ingly, in cancer, one of the most common age-related dis-
eases, it has been demonstrated that senescent cells act 
as a source of tumor recurrence via the senescence-asso-
ciated secretory phenotype (SASP) and/or the "escape 
from senescence" phenomenon [1, 4, 9, 10], suggesting 
its involvement in the clinical outcome of cancer patients 
[11]. However, implementation of SDA in retrospective 

analyses will take time to provide results as it is labor-
intensive, and in many cases the material is limited or 
even exhausted. Moreover, given the complex and largely 
heterogeneous nature of the senescence phenotype, 
tools that facilitate towards precise senescence identi-
fication are necessary to further elucidate its role in the 
pathophysiology and clinical course of human patholo-
gies, such as cancer [12, 13]. These conundrums along 
with the unexplored for senescence abundant single cell 
RNA-seq (scRNA-seq) data available databases and the 
important drawbacks of existing senescence detection 
pipelines led us to develop a molecular signature, from 
now on termed "SeneVick", that could complement SDA 
in identifying senescence accurately [14, 15]. As demon-
strated, following extensive validation, SeneVick proved 
a highly efficient tool in demarcating non-senescent 
from the senescent state. Immunotherapy exemplified 
by checkpoint inhibitors has drastically influenced can-
cer therapy in the last decades [16]. These treatments 
aim to increase the efficacy of immune cells against the 
tumor. However, current cancer immunotherapies are 
not effective in all patients [17]. Cancer-induced immu-
nodeficiency is an important determinant of the response 
to such interventions, however, the molecular mecha-
nisms though governing these processes remain to a large 
extent, unresolved [18]. Thus, an interesting matter that 
emerges regards the biological events that distinguish 
Responders (Rs) from Non-Responders (NRs) to immu-
notherapy. Dysfunction of the immune cell compartment 
within the tumor microenvironment (TME), as an out-
come of immune cell exhaustion or anergy, has been pro-
posed while the involvement of immune cell senescence 
remains uncharted [5]. Herein, we address this topic 
by implementing in a complementary manner experi-
mental and in silico approaches, signifying that NRs to 
immunotherapy melanoma patients exhibit increased 
immune cell senescence in CD4+ and CD8+ T-cell, B-cell 
(CD19+/CD20+) and natural killer (NK) cell populations 
compared to Rs. In line with these findings, we showed 
for the first time that senescent T-cells demonstrate dys-
functional properties favoring immune suppression and 
resistance to immunotherapy.

supporting, along with cytotoxicity assays, that senescent immune cells display immunosuppressive properties 
driving defective immune responses and treatment failure.

Conclusion  Overall, our findings provide evidence that cellular senescence within the immune cell compartment 
of the tumor micro-environment is a potent determinant of the response to immunotherapy and pave the way for 
strategies targeting it as promising approaches to improve the outcome of such interventions.

Keywords  Immunotherapy, Immune cell senescence, Responders, Non-responders, Melanoma, SeneVick, GLF16, 
Senoprobe
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Materials and methods
Experimental planning
Prior to addressing the main question of our study, 
whether immune cell senescence drives responsiveness to 
immunotherapy in melanoma patients ("In silico datasets 
and ex vivo melanoma setting"), we extensively validated 
our molecular senescence signature, SeneVick, in in silico 
(Sections: "In silico setting", "Analysis of the senescence 
signature SeneVick" and "Gene set enrichment analysis") 
and experimental senescence models (Sections: "In vitro 
setting", "Senescence assessment", "Telomere analysis", 
"Transcriptomics" and "Cytotoxicity assay").

Senescence models
 In silico setting
The analysis of the senescence control datasets, which 
included scRNA-seq data from mice of different age 
groups and human fibroblasts (WI-38) [19, 20], was 
conducted as outlined below: The scRNA-seq data 
(GSE132042 and GSE226225) for the mice cohort and 
human fibroblasts (WI-38), respectively, were down-
loaded from Gene Expression Omnibus (GEO). Particu-
larly, the first control dataset [19] (GSE132042) contained 
scRNA-seq data from various tissues of mice belonging 
to six age groups, from 1 to 30 months. The second data-
set (GSE226225) includes scRNA-seq data from human 
fibroblasts undergoing radiation- or therapy-induced 
senescence following Etoposide (ETO) treatment [20]. 
Cells with less than 1000 detected genes were omitted 
from the analysis. The gene counts were decontami-
nated using DecontX [21] (v1.0.0). Seurat (v5.0.1) was 
used for the main part of the analysis. The quality control 
steps included filtering of cells that had a mean expres-
sion > 2^2.5–1 of selected housekeeping genes (Table S1) 
and the mitochondrial counts were removed. The cells 
were integrated with the fastMNN function (only in the 
fibroblast dataset) and clustered using a clustering reso-
lution of 0.3 and 40 principal components.

In the mouse senescence control dataset, which con-
tained a publicly available single-cell transcriptomic atlas 
that was extracted across the lifespan of Mus musculus 
[19] linear models were used to determine whether there 
is a linear relationship between the timepoints and the 
senescence signature score. A Wilcoxon test was con-
ducted per cell type between those two groups, in order 
to determine senescence score differences.

The senescence enrichment score of each signature 
[14, 22–24] (SeneVick, SenMayo and Fridman) in human 
fibroblasts derived from the human senescence control 
dataset [20] (GSE226225) was compared via Wilcoxon 
test. Furthermore, we compared the enrichment levels of 
the aforementioned signatures in the human fibroblasts, 
in which the induction of senescence was accomplished 
with different senescence inducers (IR-irradiation, ETO 

treatment), and significance was also assessed via Wil-
coxon Test. Segmented linear regression (segmented R 
package, v.2.1.3) was used in order to model the increase 
of senescence enrichment scores of the different senes-
cence signatures across several timepoints, following 
ETO treatment.

 In vitro setting
Human diploid WI-38 fibroblasts (purchased with from 
ATCC, CCL 75) and Primary Human Fibroblasts (kindly 
provided by the Laboratory of Cell Proliferation and 
Ageing, NCSR "Demokritos" ) of the three different age 
groups (7-, 35-, 75- years) were cultured in Dulbecco’s 
modified Eagle medium (DMEM, Biowest, L0104) sup-
plemented with 10% FBS and 1% antibiotics. Cell cultures 
were maintained in an incubator at 37° C and 5% CO2. 
For ETO-induced senescence, human diploid WI-38 
fibroblasts were treated with 50 μM ETO (for six days), 
then cultured in regular medium without ETO-contain-
ing medium for four additional days. In the time course 
experiments, cells were collected at 0 (untreated), 1, 2, 4, 
7, and 10 days after ETO treatment.

Human Peripheral blood mononuclear cells (PBMCs) 
from healthy donors were isolated using Ficoll (1.077 g/
ml) following standard procedures [25]. Cells were cul-
tured in RPMI medium (Roswell Park Memorial Institute 
1640 Medium) supplemented with 5% Cell-Vive™ T-NK 
Xeno-Free Serum Substitute (Biolegend) and 200  IU/ml 
hIL-2. T-cells were subsequently isolated using the Mojo-
Sort™ Human CD3 T-Cell Isolation Kit (Biolegend) and 
then they were treated with vehicle (PBS for non-senes-
cent control cells) or cisplatin (100 μM) for 48 h to induce 
ROS-mediated senescence [26, 27] (senescent T-cells).

Analysis of the senescence signature SeneVick
Gene ontology-based functional annotation
Gene Ontology (GO) enrichment analysis was performed 
to identify significantly overrepresented biological 
themes in SeneVick among its genes. GO is a hierarchi-
cally structured vocabulary encompassing three domains: 
Biological Process (BP), Molecular Function (MF), and 
Cellular Component (CC). Each domain captures dif-
ferent facets of gene function, allowing comprehensive 
annotation across cellular contexts. GO annotations and 
enrichment testing were conducted using g: Profiler [28] 
and Database for Annotation, Visualization and Inte-
grated Discovery (DAVID v.6,8) [29] Knowledgebase 
v2023q4 as updated quarterly. Analyses were carried out 
using the Homo sapiens reference background (Ensembl 
GRCh38), and significance was determined using a 
hypergeometric test followed by Benjamini–Hochberg 
false discovery rate (FDR) correction. Only GO terms 
with FDR-adjusted p-values < 0.05 were statistically sig-
nificant. To complement the GO-based analysis, pathway 
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annotations were retrieved from Kyoto Encyclopedia of 
Genes and Genomes (KEGG), Reactome, and BioCarta-
databases. These included canonical signaling pathways 
relevant to senescence, such as the p53/p21WAF1/CIP1 
axis, NF-κB activation, mitochondrial metabolism, SASP 
regulation, and DNA damage response (DDR). Each gene 
was mapped to one or more functional categories based 
on GO and pathway term enrichment.

Construction of functional association matrix
A binary gene-function matrix was constructed in which 
rows represented individual genes and columns repre-
sented significantly enriched GO terms and pathways. 
Each matrix entry was coded as "1" if the gene was asso-
ciated with a given term, and "0" otherwise. To reduce 
dimensionality and remove redundancy due to overlap-
ping terms, Principal Component Analysis (PCA) was 
applied, retaining components explaining > 90% of the 
total variance. To delineate distinct biological modules 
within the senescence signature, unsupervised cluster-
ing was performed on the reduced gene-function matrix. 
Two complementary approaches were applied:

1.	 K-means clustering [30] was implemented using the 
Euclidean distance metric. The optimal number of 
clusters (k) was selected by evaluating the elbow plot 
and silhouette score across a range of k -values. This 
method identified non-overlapping clusters of genes 
sharing similar functional annotation profiles.

2.	 Agglomerative hierarchical clustering was 
performed using Ward’s linkage method, producing 
a dendrogram to evaluate hierarchical relationships 
among functional groups. Final clusters were 
defined by cutting the dendrogram at a level 
that maximized within-cluster similarity while 
preserving between-cluster separation.

Genes associated with multiple terms were assigned to 
the cluster in which they showed the highest cumulative 
enrichment score. In cases of ambiguity, gene member-
ship was resolved based on semantic similarity scoring, 
calculated using the GOSemSim R package. This enabled 
biologically meaningful classification based on ontologi-
cal proximity to core senescence processes. All analy-
ses were conducted in R version 4.3.0 and Python 3.10, 
using the packages clusterProfiler, factoextra, GOSem-
Sim, scikit-learn, and SciPy. GO and pathway databases 
were accessed in June 2025 to ensure current annotation 
status.

Senescence assessment
Senescence assessment was performed in cells following 
double staining with the senescence detecting reagent 
GLF16 that we generated along with related senescence 

markers, and in tissues by applying the senoprobes GL13 
[31] and GLF16, according to the SDA [3, 24, 32], as 
follows:

GLF16 staining/Immunofluorescence
Primary human skin fibroblasts of three different age 
groups (7-, 35-, and 75- years) or human diploid WI-38 
fibroblasts were seeded (2 × 105 cells/well) on coverslips 
(12-mm diameter). The latter were subsequently treated 
with Etoposide for senescence induction [20]. In both 
cases, coverslips were subsequently removed; cells were 
washed, fixed (4% PFA/PBS, 10 min, 4  °C) and permea-
bilized (Triton 0.3%/PBS 15  min). Blocking of non-spe-
cific epitopes was performed using sheep serum (dilution 
1/40, S22, Merck Millipore). Cells were subsequently 
stained for lipofuscin using GLF16 for 10  min (70  mg/
ml) avoiding light exposure as previously described [24]. 
Coverslips were washed 3 times for 10  min each with 
GLF16 diluent (2.5% DMSO/2.5% Tween-20/95% PBS). 
Then, cells were incubated with anti-p16ΙΝΚ4Α (16D5, QR 
Labs) or -p21WAF1/CIP1 (1947S, Cell Signaling) antibodies 
for 1  h at room temperature (RT), followed by applica-
tion of appropriate secondary antibodies (for 1 h in RT). 
Nuclei were finally visualized by DAPI. Cells were washed 
(30s with dH2O) and coverslips were mounted onto slides 
for microscopy. T-cells were isolated from PBMCs and 
treated as described in section "In vitro setting". Cyto-
spins of 1 × 105 cells were prepared using the cytocentri-
fuge (400 g, 5 min) and stained with GLF16 according to 
the SDA mentioned in 2.4.1.

In the case of tissues, 4-μm-thick sections of forma-
lin-fixed and paraffin-embedded tissues (FFPE) were 
obtained, de-paraffinized and hydrated. Antigen retrieval 
was performed by immersing samples in 10  mM of cit-
ric acid buffer (pH 6.0) in a steamer for 15  min. Tissue 
samples were cooled down and washed with PBS. Block-
ing of non-specific binding for the epitopes was done by 
applying normal goat serum for 1  h at room tempera-
ture (dilution 1:40, Abcam, Cambridge, UK ab138478). 
The samples were incubated with the following primary 
antibodies overnight at 4◦C: CD4 (Ready to use, M7310, 
Dako), CD8 (1:20, 144B, Dako) and CD20 (1:150, 250586, 
Abbiotech). Positive cells were visualized using sec-
ondary goat anti-mouse (Abcam, ab6785, polyclonal) 
and goat anti-rabbit  immunoglobulin G and heavy and 
light chains (IgG H&L antibody, Alexa Fluor 488; 1:500; 
Abcam, ab150077, polyclonal) for 1  h. Upon staining 
with primary and secondary antibodies, tissue sections 
were stained for lipofuscin applying GLF16 for 10  min 
(70  μg/ml) in the dark. Excess compound was removed 
by washing three times with the GLF16 diluent (2.5% 
DMSO/2.5% Tween 20/95% PBS). Nuclei were finally 
visualized by DAPI staining. The samples were washed 
(30  s with dH2O), and coverslips were mounted onto 
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slides for microscopy. Samples were imaged using a Leica 
TCS-SP8 confocal microscope.

GL13 staining
FFPE sections from melanomas were de-paraffinized 
and hydrated. Subsequently, antigen retrieval was car-
ried out as described in section "Senescence assessment" 
and after blocking of non-specific binding sites with goat 
serum (Abcam ab1388478, in 1:40) and Hydrogen Perox-
ide (H2O2), (Dako REAL EnVision Detection System kit 
Cat.no: K5007, Santa Clara, CA, USA) the tissues were 
incubated sequentially in 50% and 70% ethanol for 5 min 
each, respectively. Following application of GL13 on each 
tissue, the samples were incubated at 37 °C for 10 min. At 
the end of this step, the samples were washed with 50% 
ethanol for 2–3 min, with PBS and then Triton-X 0.3%/
PBS was applied for 5 min in order to remove any reagent 
precipitates. Tissues were washed again with PBS and 
anti-biotin antibody (in dilution 1:300, Hyb-8, ab201341, 
Abcam, Cambridge, UK) was applied and incubated for 
1  h at RT. The mean percentage of GL13-positive cells 
was assessed from ≥ 5 high-power fields (Objective 40×) 
per sample using a ZEISS Axiolab5 optical microscope.

Immunocytochemistry—Immunohistochemistry
Cells from each cell line were seeded on coverslips as 
mentioned above. For the Immunocytochemistry (ICC), 
the cells were permeabilized using Triton-X 0.3%/PBS for 
15  min at RT, followed by the blocking of non-specific 
binding sites with goat serum [33] (Abcam ab138478, 
in 1:40) for 1  h at RT and H2O2 for 18 min. Cells were 
then incubated with Ki67 (Cat.no: ab16667, dilution 
1:250, SP-6, Abcam, Cambridge, UK) for 1 h at RT. Posi-
tive cells were visualized using the Dako REAL EnVision 
Detection System kit (Cat.no: K5007, Santa Clara, CA, 
USA) according to the manufacturer’s instructions using 
3,3′-Diaminobenzidine (DAB) (brown color). Cover-
slips were counterstained with hematoxylin, sealed and 
observed under a ZEISS Axiolab5 (Munich, Germany) 
optical microscope with 20× or 40× objectives.

Regarding the FFPE material (Section: "GLF16/Immu-
nofluoresence"), sections were incubated with anti-CD4, 
anti-CD8 and anti-CD20 antibodies, overnight at 4◦C, 
respectively: CD4 (Ready to use, M7310, Dako), CD8 
(1:20, 144B, Dako) and CD20 (1:150, 250586, Abbiotech). 
Positive cells were visualized using the Dako REAL EnVi-
sion Detection System kit (Cat.no: K5007, Santa Clara, 
CA, USA) according to the manufacturer’s instructions 
using 3,3-Diaminobenzidine (DAB). Sections were coun-
ter-stained with hematoxylin and observed using a ZEISS 
Axiolab 5 optical microscope with a 20× objective, 25 µm 
scale bar.

Telomere analysis
Telomere length measurement
Relative telomere length determination (T/S) refers to the 
ratio of telomere (T) hexamer repeat sequence TTAGGG 
signal, to autosomal single copy gene (S) signal. To assess 
this, cells were collected and frozen at −80  °C until all 
samples were ready for simultaneous DNA extraction 
and analysis. Genomic DNA was extracted using the 
T3010 Monarch Spin gDNA Extraction Kit (T3010, New 
England Biolabs). Telomere ("T") and single copy gene 
(human albumin, "S") lengths were measured via real-
time PCR (Roche LC480, Roche Diagnostics Corpora-
tion, Indianapolis, IN). Samples were loaded on 96-well 
plates and run in triplicate. Repeated measures of the T/S 
ratio in the same DNA sample gave the lowest variabil-
ity when the sample well position for T-PCR on the first 
plate matched its well position for S-PCR on the second 
plate. When one sample's duplicate T/S values differed by 
greater than 7%, the sample was run a third time, and the 
two closest values were averaged to give the final result. 
This ratio was subsequently normalized by control DNA 
samples to yield relative standardized T/S ratios propor-
tional to average telomere length. A 5-point standard 
curve (made of pooled reference DNA samples (100 to 
6.25  ng/uL) and randomly located internal QC sample 
replicates (n = 5), were utilized as calibrator samples, to 
guide analysis and indicate overall quality of assay perfor-
mance. Additionally, a non-telomeric control was added 
to random well locations to provide a unique fingerprint 
for each plate. The primers (100μΜ, Integrated DNA 
Technologies Coralville, IA) used were the following:

i.	  telomeric assay:
	 TelG [5’-ACACTAA GGTTT GGGTT TGGGTT 

TGGGTTT GGGTT AGTGT-3’].
	 TelC [3’-T GTTAGG TATC CCTA TCCCTAT CCC 

TATCC CTA TCCC TAACA-5’]
ii.	 single-copy gene (Albumin) assay:
	 AlbU [5’-C GGCGG CGG GCGG CGCGG GCTG 

GGCGG AAATG CTGCACA GAAT CCTTG-3’]
	 AlbD [5’-G CCCGG CCC GCCGC GCCC GTCC 

CGCCG GAAAA GCAT GGTC GCCTGTT-3’] 
PCR was performed using 20uL reaction volumes 
consisting of: 10 uL of 2X Luna® Universal qPCR 
Master Mix (NEB, US), 7.0 uL of Molecular 
Biology Grade (MBG) Water, and 0.5 uL of 1 µM 
primers mix. Thermal cycling was performed on 
a LightCycler 480 (Roche) where PCR conditions 
were (i) T (telomeric) PCR: 95˚C hold for 5 min, 
denature at 98˚C for 15 s, anneal at 54˚C for 2 min, 
with fluorescence data collection, 35 cycles and 
(ii) S (single-copy gene, Alb) PCR: 98˚C hold for 
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5 min, denature at 98˚C for 15 s, anneal at 58˚C for 
1 min, with fluorescence data collection, 43 cycles. 
Ct-values of triplicates were averaged, if meeting 
a CV threshold of less than 2%. The telomere (T) 
concentration was divided by the albumin (Alb) 
concentration (S) to yield a raw T/S ratio. Raw T/S 
ratios were subsequently normalized by average 
internal QC calibrator samples within the same 
plate set. Z-scores were calculated to adjust RTL in 
case differences in dynamic range are introduced by 
systematic differences between batches.

Telomeric peptide nucleic acid (PNA) FISH
Telomeric PNA Fluorescence In Situ Hybridization 
(FISH) was held according to the latest established pro-
tocols [34]. The primary skin human fibroblast cells of 
the three different age groups (7-, 35- and 75- years) were 
cultured in a confluency of 60–80% and they were split 
at 48–72  h before harvesting for metaphase chromo-
somes. Cell pellets were fixed with methanol and acetic 
acid and dropped on wet slides for overnight incubation. 
Cells were subsequently re-hydrated using PBS (15 min, 
RT) and subsequently incubated with RNase A (100 μg/
μl, Merck KGaA, Darmstadt, Germany) for 1 h at 37 °C. 
Chromosome preparations were fixed in 3.7% formalde-
hyde (2 min) and washed with TBS (twice, 5 min each). 
Chromosome preparations were digested with pepsin 
(1  mg/ml, in 10  mM HCL, pH 2) at 37  °C for 10  min 
and then washed twice with TBS and finally dehydrated 
by serial incubations in 70, 85, and 96% cold ethanol 
and air‐dried. Telomere‐specific hybridizations were 
accomplished employing Cy3‐labeled (TTAGGG)3 and 
FITC‐labeled (CCCTAA) 3 PNA probes (BioSynthesis, 
Lewisville, TX). After two consecutive washing steps, 
one in PBS and one in Wash solution (0.1 M Tris–HCL, 
0.15  M NaCl, for 5  min. Subsequently, 10  μl of hybrid-
ization mixture comprising of 0.2–0.8 μM PNA telomeric 
probes, 70% formamide, and 10 mM Tris, pH 7.2 (Cyto-
cell, Oxford Gene Technology, UK), was applied to the 
marked area of the slide. The latter underwent heating 
at 80 °C for 5 min during the denaturing FISH protocol, 
whereas this step was excluded in the non-denaturing 
FISH procedure. Slides from both denaturing and non-
denaturing FISH procedures were incubated overnight 
at 37  °C in a humid environment. On the following day, 
slides were sequentially washed: once in PBS for 15 min, 
once in 0.5× Saline Sodium Citrate buffer (SSC) contain-
ing 0.1% SDS at 72  °C for 2 min, once in 2× SSC (pH 7) 
supplemented with 0.05% Tween-20 at room tempera-
ture for 30 min, and twice more in PBS for 15 min each. 
Preparations were then counterstained and mounted 

with Vectashield containing DAPI (Vector Laboratories 
Inc). Images were captured under an Axion Imager Z1 
Zeiss fluorescence microscope (63× objective) and ana-
lyzed using MetaSystems Isis software. The signal of the 
centromere of chromosome 2 functioned as the internal 
reference control. Human centromere 2‐specific PNA 
probes labeled with Cy3 or FITC were provided from 
DAKO Cytomation (Glostrup, Denmark).

Transcriptomics and analysis
Transcriptomics
Primary human Fibroblasts of 7-, 35-, and 75-years old 
donors and PBMCs from Rs and NRs patients isolated 
as described in section "In vitro setting" were seeded 
onto 10-cm cell culture plates (70% confluency). Cells 
were collected and total mRNA was extracted using the 
NucleoSpin RNA mini kit (Macherey–Nagel, Germany). 
RNASeq libraries were prepared with the NEBNext ultra 
II directional RNASeq kit (Reverse strand specificity) and 
single end sequenced at 101 bp length with the Illumina 
NovaSeq 6000 platform, in the Greek Genome Center of 
BRFAA.

Raw data were mapped to the human genome (version 
GRCh38/hg38) using STAR [35] aligner. Samtools [36] 
were used for data filtering and file format conversion, 
while the HT-seq count algorithm [37] was used to assign 
aligned reads to exons using the following command line 
‘‘htseq-counts non intersection–nonempty’’. Normaliza-
tion of reads and removal of unwanted variation was per-
formed with RUVseq [38]. Differentially expressed genes 
were assessed using the DESeq2 R package [39] and the 
significant genes were characterized by log2 fold change 
cut-off of 0.5 and p-value less than 0.05. Gene ontology 
and pathway analysis was accomplished using the DAVID 
software [40]. Only pathways and biological processes 
with p-value less than 0.05 were characterized as signifi-
cantly enriched. Heatmaps representing the significant 
differentially expressed genes and the most significant 
genes where SeneVick was found enriched were con-
structed with R package Shiny [41], where hierarchical 
clustering was performed, with linkage method ‘average’.

Gene set enrichment analysis
Gene Set Enrichment Analysis [42] (GSEA) was used in 
order to determine whether SeneVick is enriched in senes-
cent samples. More specifically, the signature’s genes that 
are expected to be upregulated were tested for enrichment 
separately from those expected to be downregulated. Age 
in years was treated as a continuous variable and Pear-
son correlation was used to determine the enrichment or 
depletion of the signature’s genes across age.
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Cytotoxicity assay
Human PBMCs from healthy donors were isolated, 
cultured and the senescence induction was held as 
referred in section "In vitro setting". T-cells were acti-
vated using CD3/CD28 activation beads (Biolegend,) 
(1:1 cell-to-bead ratio) for 3  days. Melanoma tumor 
cells (A375) were loaded onto U-bottom 96-well plates 
at a density of 2 × 104 cells/well. Activated T-cells 
were subsequently added at a 0:1 (no T-cells) 1:1, 
10:1 and 25:1  T-cell: tumor cell ratio and co-cultures 
were incubated for 24  h. Lymphocytes were removed 
by PBS washing and viable tumor cell numbers were 
determined by MTS 3-(4,5-dimethylthiazol-2-yl)−5-
(3-carboxymethoxyphenyl)−2-(4-sulfophenyl)−2H-
tetrazolium, inner salt).

Melanoma patients
In silico datasets
Integration of databases  The scRNA-seq data [43, 44] 
for the melanoma cohort (Table S2) were processed as 
described above in section "In silico setting", with the addi-
tional steps of a) the conversion of the counts to TPM, log 
transformation and b) the use of a minimum mean house-
keeping expression threshold of log2(TPM + 1) > 2.5. After 
the quality control steps, the cells were annotated using 
SingleR (v2.4.1) while using as a reference, a dataset com-
prising 300.000 immune cells [45, 46]. The response sta-
tus of the melanoma patients in the in silico datasets was 
assessed according to the Response Evaluation Criteria in 
Solid Tumours (RECIST) [47].
The dataset was then split into broad cell types and 
comparisons were made between Rs and NRs. For each 
cell type, the dataset was integrated using the fastMNN 
function and clustered using a clustering resolution of 
0.3 and 40 principal components. Ucell [48] (v2.6.2) was 
used to calculate the senescence score, for each of the 
three aforementioned signatures (SeneVick, SenMayo 
and Fridman), as well as the T-cell anergy and exhaustion 
scores. Next, in the cases where cell type contained clus-
ters exhibiting low senescence scores, and high exhaus-
tion scores, these clusters were excluded. A Wilcoxon test 
was conducted between the Rs and NRs cells, in order to 
determine senescence score differences. The scRNA data 
obtained from patients prior to immunotherapy admin-
istration were analyzed using the same method. Of note 
the only difference was noted in the fact that there wasn’t 
an need for integration of the data and that in cases 
where the low senescence—high exhaustion cells were 
not forming a separate cluster such as in CD4 + T-cells, 
we removed all the cells which had a senescence score 
below the 20th percentile and simultaneously an exhaus-
tion score above the 80th percentile and used a clustering 
resolution of 0.5.

SeneVick’s cut-off determination to predict immu-
notherapy response  To assess whether SeneVick could 
predict the response to immunotherapy in our dataset, 
we defined a per-patient, senescence index based on our 
signature:

	
Sene Vick Index =

High senescence cells
Total cells + ps

Low senescence cells
Total cells + ps

where ps = 0.01 is a pseudocount to avoid division by 
zero. The SeneVick index was calculated for each patient 
with more than 10 cells per cell type (CD4+ T-cells and 
CD8+ T-cells). To this purpose, we generated two thresh-
olds: The upper one, above which cells are considered 
highly senescent, and the bottom one, below which cells 
are considered marginally senescent. In order to avoid 
bias in our statistical methodology and since each cell 
type would be characterized by different optimal thresh-
olds, we ran an optimization analysis. In this analysis, we 
tested all upper percentiles of senescence enrichment 
(between 55–95) and all lower percentiles of senescence 
enrichment (between 5 and 45) with a step size of 5 
with the resulting patient indices for each threshold pair 
evaluated  via Receiver operating characteristic (ROC) 
analysis. The optimal threshold pair was determined as 
the one that maximized the area under the curve (AUC) 
score, while retaining the vast majority of patient-derived 
cells from the in silico datasets [43, 44]. The latter was 
accomplished using Youden’s index [49], which allows 
for the optimal discrimination of Rs and NRs. All in all, 
the above methodological framework constitutes a novel 
approach that is recommended to be followed for effec-
tive senescence cut-off determination in the dataset of 
interest.

Cell communication analysis  In order to infer the cell–
cell communication between the immune cells the Cell-
Chat R (v2.2.0) package was used [50]. Cells were grouped 
based on their cell type and response status, and the mini-
mum number of cells required per group for the analysis 
was set to 50. Subsequently, the differences between Rs 
and NRs Ligand-Receptor pair communication probabili-
ties in CD8 + T-cells, CD4 + T-cells, NK cells and B-cells 
(CD19 +/CD20 +) were identified.

Εx vivo melanoma setting
Twenty-four (24) melanoma patients that received sin-
gle or combinatorial immune checkpoint inhibitors, as 
first line therapy after entering stage IV, were analyzed. 
Patient and clinical characteristics are depicted in Table 
S3. All patients included in this study gave their written 
consent and the study was approved by the local ethical 
review board (project ID: Ethikkommission Ostschweiz, 
EKOS 16/079). Patient’s response was assessed using 
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RECIST version 1.1 [47], approximately 3  months after 
initiation of therapy and at 3-month intervals thereafter. 
The Best Overall Response (BOR), defined as the best 
response recorded from the start treatment initiation 
until disease progression was documented. Based on 
BOR, patients were categorized as responders [47] (Rs, 
complete or partial response) or non-responders (NR, 
stable disease or progressive disease).

Senescence assessment in PBMCs  Peripheral blood 
mononuclear cells (PBMCs) from the melanoma patients 
were obtained following established procedures using 
Ficoll as previously described [25]. PBMCs were thawed, 
washed twice with PBS containing 0.5% heat-inactivated 
fetal bovine serum (PAN-Biotech GmbH; staining buffer), 
and resuspended in staining buffer. Cell viability and con-
centration were assessed microscopically using a hemo-
cytometer (Neubauer chamber) and Trypan blue staining 
(Corning®, NY, USA). Cells were set at a final concentra-
tion of 5 × 106/ml and 100 μl of them were then transferred 
to a 5  ml round-bottom polystyrene Flow Cytometry 
Analysis (FACS) tube (BD Biosciences, NJ, USA). Cells 
were labelled with BD Horizon™ Fixable Viability Stain 
570 (BD Biosciences, NJ, USA) for 20 min at 4 °C in the 
dark and washed twice with staining buffer, before add-
ing the master mix of 15 fluorochrome-conjugated mono-
clonal antibodies (Table S4) targeting surface antigens 
(BD Biosciences, NJ, USA; Biolegend Inc., CA, USA). To 
minimize non-specific binding, 10  μl of BD Pharmin-
gen™ MonoBlock™ buffer (BD Biosciences, NJ, USA) was 
added together with the antibody master mix, and cells 
were incubated for 30  min at 4  °C in the dark. Further, 
cells were fixed and permeabilized using the BD Pharmin-
gen™ Human FoxP3 Buffer Set (BD Biosciences, NJ, USA), 
following the manufacturer’s instructions, and labelled 
with anti-Ki67 antibody (BD Horizon™ BV711 Mouse 
Anti-Human Ki67; BD Biosciences, NJ, USA) for 30 min 
at 4 °C in the dark. After washing twice with staining buf-
fer, cell pellets were resuspended in 200 μl GLF16 diluent 
[95% PBS, 2.5% Tween-20 (Sigma-Aldrich®), 2.5% DMSO 
(PAN-Biotech GmbH)] containing 2 μl of the GLF16 dye 
(200 μg/ml) and incubated for 10 min at room tempera-
ture in the dark under mild shaking. After two washing 
steps with GLF16 diluent, samples were acquired on a 
Cytek Northern Lights spectral flow cytometer (Cytek® 
Biosciences) for stable flow cytometer performance, daily 
SpectroFlo® QC Beads (Cytek® Biosciences) were run. Data 
analysis was performed with FlowJo™ v10 Software (BD 
Life Sciences). The gating strategy for analysis is presented 
in the supplemental material. During the aforementioned 
analysis unstained controls were analyzed for all samples.

Sorting of live senescent cells applying mGLF16  Iso-
lated PBMCs from the melanoma patients (Rs and NRs) 

were acquired according to Ficoll protocol as mentioned 
above. The cells were treated with 0.0166  μg/ml (Flow 
Cytometry) mGLF16 for 3 h (37 °C, 5% CO2). Cells were 
collected, washed, resuspended in PBS/0,5% FBS and 
then they were sorted [24]. The isolation of GLF16+ and 
GLF16-PBMCsp for subsequent RNA-sequencing was 
performed with a BD FACSMelody cell sorter (BD Biosci-
ences, NJ, USA) using the high- purity mode. A minimum 
of 100.000 GLF16+ from NRs patients and GLF16- PBMCs 
from Rs patients were collected in separate tubes contain-
ing sorting buffer. Each sorted population was tested for 
contamination by a post-sort acquisition, which verified 
99% purity for each sample.

Senescence assessment in tissues  Senescence assessment 
in FFPE samples was carried out using GL13 or GLF16 seno-
probes as described insections "GLF16/Immunofluoresence" 
and "Immunocytochemistry-Immunohistochemistry". 

Quantification and statistical analysis
In each experiment, values are demonstrated as 
means ± standard deviation. Differences between groups 
were estimated using the parametric 2-tailed Student’s t 
test, Wilcoxon test, the non-parametric Mann Whitney 
or 1-way ANOVA with Bonferroni’s post hoc test for 
multiple comparisons, as appropriate. p < 0.05 were con-
sidered significant. In order to compare the ages of Rs 
and NRs melanoma patients, a Shapiro–Wilk normality 
test was conducted to examine the normality of the dis-
tributions of the age in each group (p < 0.05, not normally 
distributed) and then a Wilcoxon test was held between 
the ages of the two groups of patients. Statistical analy-
sis was performed using the Statistical Package for Social 
Sciences (SPSS) version 13.0.0 (International business 
machines-IBM).

Results
Decoding the senescence molecular signature SeneVick
We have recently generated SeneVick by incorporating 
studies that assessed cellular senescence in human cells 
using the senescence detecting algorithm (SDA) and 
concurrently included a variety of high throughput data 
(transcriptomics: RNA-seq and scRNA-seq, proteomics 
and epigenomics [14], Figure S1a). The signature is com-
posed of 100 genes and exhibits an expression motif that 
complies with the senescence phenotype. The majority 
of them are down-regulated (n = 67) (Figure S1b). Char-
acteristically, the genes included in the signature are 
implicated in diverse biological processes and can be 
grouped into distinct functional clusters, reflecting to a 
large extent the hallmarks of the senescence phenotype 
[1] (Figure S1b). The most profound cluster regards genes 
encoding potent cell cycle regulators and factors involved 
in the cellular response to DNA damage (Figure S1b). The 



Page 9 of 27Pantelis et al. Molecular Cancer          (2025) 24:308 

second one consists of genes controlling chromosome 
structure and stability (Figure S1b). A considerable pro-
portion of the signature encompasses genes related to the 
activation of immune responses and interactions among 
immune cells, while the other two clusters contain genes 
involved in metabolic and other functions (Figure S1b). 
Further zooming into clusters uncovered the involvement 
of the genes in a variety of cellular processes (Figure S1c). 
Interestingly, common genes between SeneVick and state 
of the art senescence molecular signatures, namely the 
SenMayo and FridMan gene sets, were identified [22, 23] 
(Figure S1d).

Our senescence signature exhibits several unique and 
biologically intriguing features that underline its poten-
tial functional importance. First and foremost, analysis of 
the SeneVick gene set revealed that the constituent genes 
do not represent simple haplotypes, suggesting that their 
co-occurrence is not the result of genetic linkage or 
population-based inheritance patterns. Another promi-
nent molecular feature of the SeneVick-encoded proteins 
is their strong enrichment in ankyrin repeat domains. 
Ankyrin repeats are highly structured motifs that medi-
ate protein–protein interactions, often serving as scaf-
folds in large signaling complexes [51]. Their consistent 
appearance across nearly all proteins encoded by the Sen-
eVick genes suggests a non-random, biologically mean-
ingful pattern, potentially orchestrating the senescence 
phenotype. Indeed, ankyrin repeat-containing proteins 
have been implicated in the regulation of cellular integ-
rity, cell-cycle arrest, stress signal transduction, and dif-
ferentiation processes, all of which have been linked with 
cellular senescence [51]. In addition to structural motifs, 
the genomic architecture of the SeneVick genes revealed 
another layer of functional organization: a statistically 
significant enrichment in T-dimeric motifs within their 
genomic sequences, exhibiting a periodic distribution. 
Given that periodic nucleotide motifs have been associ-
ated with the dynamic modulation of gene expression, 
this feature raises the possibility of a regulatory role dur-
ing senescence [52]. Lastly, when mapping the SeneVick 
genes on chromosomes, we identified their absence in 
chromosomes 14, 18 and 21 and their underrepresenta-
tion in chromosome 13 (Figure S1b). Interestingly, these 
chromosomes are associated with trisomy syndromes—
Patau (trisomy 13), Edwards (trisomy 18), and Down 
syndrome (trisomy 21) or lethality (trisomy 14), entities 
characterized by premature aging, chronic inflammation 
and senescence phenotypes [53–55]. It could be hypoth-
esized that the absence or underrepresentation of SeneV-
ick genes at these chromosomes may imply a protective 
genomic architecture, where senescence regulators are 
compartmentalized away from the chromosomal loci 
whose abnormal dosage leads to accelerated aging syn-
dromes or premature death.

SeneVick effectively identifies senescence irrespective of 
tissue origin, senescence type or species
The SeneVick signature emerged by exploiting data from 
human cells of different tissue origin and proved efficient 
in demarcating non-senescence from senescence and 
in discriminating cellular senescence from aging in the 
liver [14]. We subsequently focused on testing its appli-
cability and validating its fidelity in detecting senescence 
across tissues in other species besides humans. To eluci-
date this, we initially applied SeneVick in a publicly avail-
able single-cell transcriptomic atlas that was extracted 
across the lifespan of Mus musculus [19]. This dataset 
comprised scRNA-seq data obtained from 20 tissues and 
organs of mice split into six age groups, that ranged from 
1  month which is equivalent of human early childhood 
to 30  months (equivalent to a human centenarian) [19]. 
Given that single cell analyses allow for the determination 
of gene expression in specific cell populations, they can 
facilitate uncovering certain cellular processes, such as 
cellular senescence, that might have been overlooked or 
hidden upon bulk RNA analyses. As demonstrated in Fig-
ure S2a, SeneVick was found significantly enriched in a 
variety of cell types and most profoundly in cardiac fibro-
blasts, keratinocytes and skeletal muscle cells of old mice 
(18 months and beyond, Wilcoxon, p < 0.05), reaching the 
highest values in older mice (Figure S2b). These results 
are in line with other studies in the same tissues support-
ing a linear increase of the proportion of cells expressing 
senescence markers with age progression [19]. The lat-
ter was further confirmed in an in vitro  human setting 
consisting of primary skin fibroblasts obtained from 7-, 
35-, and 75-year-old individuals, capturing time-points of 
the aging process. In contrast to young cells, those from 
75 year old donors were found to exert replicative senes-
cence (a senescence type induced by telomere shorten-
ing) [1] that was verified applying the SDA along with 
telomere length analyses (Fig. 1a, 1b,1c, 1d, 1e). To cross-
check this finding, we isolated RNA from these cells and 
implemented SeneVick in RNAseq data extracted from 
these fibroblasts and identified a progressive enrichment 
of the signature upon replicative senescence and age 
(Fig. 1f ). Particularly, GSEA analysis resulted in a positive 
Normalized Enrichment Score (NES) of 1.76 (p < 0.002) 
for genes whose expression increases with age and a neg-
ative NES of −3.18 (p < 0.001) for those that are downreg-
ulated as age progresses (Fig. 1f ). Overall, these findings 
highlight the potency of the extracted signature in detect-
ing senescence, irrespective of tissue origin and spe-
cies. To further validate SeneVick, we compared it with 
two state of the art senescence signatures, namely Sen-
Mayo and Fridman [22, 23]. Both signatures have been 
extracted from human data with the SenMayo gene set 
consisting predominantly of SASP factors, while the key 
genes represented in the Fridman signature are involved 
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Fig. 1 (See legend on next page.)
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in six particular pathways: pRB/p53, cytoskeletal forma-
tion, interferon-related, insulin like growth factor-related, 
mitogen-activated protein kinase (MAPK) and oxidative 
stress. We implemented these three senescence signa-
tures in a publicly available human sc-RNAseq dataset 
[20] (GSE226225) obtained from human fibroblasts that 
were analyzed in two different settings. First, sc-RNAseq 
data were extracted from a time course experiment by 
monitoring cells for 10 days following treatment with the 
chemotherapeutic drug Etoposide (ETO) (Fig.  2a). We 
repeated this experiment staining cells according to the 
SDA in three different timepoints [3] (Day 0, 4, 10). Both 
approaches revealed absence of SeneVick enrichment 
and lack of senescence markers in day 0 and a progres-
sive increase in the following days, reaching the highest 
values at day 10 (Fig. 2b, Fig. 2c, Figure S3a). The in silico 
dataset was used to compare SeneVick with the other 
two signatures, taking into account the distribution of 
the enrichment scores [48] and using segmented linear 
regression analysis that allows the capturing of two dif-
ferent rates of increase. While the breakpoint was identi-
fied on or near day 1 in all signatures, the slope from day 
0 to day 1 when applying SeneVick was higher (0.14) than 
the respective SenMayo (0.013) and Fridman (0.06) ones 
(p < 0.05, Figure S3b). Given that SeneVick was not found 
enriched in non-senescent (control) cells (day 0), this 
finding implies a larger difference of SeneVick enrich-
ment between non-senescence and senescence (day 1 and 
beyond, Figure S3b). Similar observations emerged from 
the second setting where the signatures were applied in 
sc-RNAseq data of fibroblasts exerting different types 
of cellular senescence (irradiation-induced and ETO-
induced). As shown in Figure S3c, enrichment of the 
SenMayo and Fridman signatures was also evident in the 
control (non-senescent) state while SeneVick was absent. 
Altogether, SeneVick is more specific and efficient com-
pared to the other signatures in demarcating senescent 
cells from non-senescent ones, even when senescence is 

low providing thus a valuable tool to uncover senescence 
that might be encrypted or overlooked.

Immune cell senescence drives response to 
immunotherapy in melanoma patients
Next, we tested whether immune cell senescence con-
tributes to dysfunction of the immune cell compartment 
within the TME, affecting the outcome of immuno-
therapy. Particularly, we conducted a case control study, 
implementing two senescence detecting approaches that 
complement each other. First, SeneVick was retrospec-
tively applied in a scRNA-seq dataset from melanoma 
patients that received immunotherapy [43, 44] and sec-
ondly, we performed the SDA in clinical material from 
an analogous melanoma cohort (Tables S2 and S3). We 
focused on melanoma based on the fact that immuno-
therapy is a first-line therapy in this type of malignancy, 
while in other types of cancer it is usually implemented in 
combination with chemotherapy or radiotherapy.

Regarding the first approach we took advantage of the 
only two identified in the literature studies containing 
single cell data from melanoma patients following immu-
notherapy, particularly PD1, CTLA4 or combined inhibi-
tion and concurrently demonstrating the response status 
of these patients [43, 44] (Table S2). Thus, data regarding 
gene expression per cell type in Rs and NRs were acces-
sible. In some cases, data obtained prior to treatment 
were also available (Table S2). As an initial step, we fol-
lowed a detailed bioinformatic pipeline to integrate the 
two datasets as depicted in Figure S4, which included 
several steps of data processing, cell annotation and nor-
malization. This process resulted in a cohort of a total 
of 48 melanoma patients comprising 30 NRs and 18 Rs. 
In this setting, we found distinct clusters of the immune 
cell compartment comprising mainly CD4 + T-cells, 
CD8 + T-cells, NK and B-cells (CD19 +/CD20 +). Dur-
ing the ensuing stages, we implemented SeneVick in 
the latter dataset and investigated the senescence status 

(See figure on previous page.)
Fig. 1  Validation of SeneVick in a human replicative senescence (aging) model. a. Schematic illustration of the primary skin fibroblasts extraction and 
culture. b Upper panel: Senescence assessment in human primary fibroblasts from different age groups (Age: 7-, 35-, and 75 years) using the senescence 
detecting algorithm (SDA). Representative images of double staining of cells with the senescence markers GLF16 (red) and p21WAF1/CIP1 (green) and DAPI 
counterstain. The images were quantified using ImageJ (n = 3 biological replicates). Objective: 20x. Scale bar: 30 μm. Lower panel: Evaluation of prolifera-
tion in human primary fibroblasts from different age groups (Age: 7-, 35-. and 75-years). Representative images of Ki67 immunocytochemical staining 
(upper panel). Positive cells were calculated by evaluating the strong brown nuclear signal for Ki67. c. Graphs depict the percentage of positive cells (%) 
for GLF16 (right side), p21.WAF1/CIP1 (middle side) and Ki67 (right side). Approximately 100 cells per optical field were counted, and ≥ 5 high-power fields 
per sample were used for the quantification. Statistical analysis was performed employing Wilcoxon nonparametric test. The data obtained represent 
means ± standard deviation. P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. Objective 20×, 40×. Scale bars: 30 μm and 60 μm respectively. d. Telomere 
length curve depicting telomere attrition during aging in human primary fibroblasts. e. Microscopy images from PNA-FISH using DAPI with a telomere-
specific probe (right) depicting telomere attrition on metaphase chromosomes from the three age groups. Objectives 63x. f. Human fibroblast gene 
expression after VST-transformation and z-scaling, (left panel = upregulated genes, right panel = downregulated genes). The upregulated genes show 
progressive increase, whereas the downregulated genes show progressive decline. This result is in concordance with the result of the GSEA analysis. The 
corresponding heatmap depicts duplicates for each age group. Two data sets were compared with unpaired t-tests, *P < 0.05, **P < 0.01, ***P < 0.001, 
****P < 0.0001. "Donor icons were provided by Servier Medical Art (https://smart.servier.com/), licensed under CC BY 4.0 (​h​t​t​p​​s​:​/​​/​c​r​e​​a​t​​i​v​e​​c​o​m​​m​o​n​s​​.​o​​r​g​/​​
l​i​c​​e​n​s​e​​s​/​​b​y​/​4​.​0​/)"

https://smart.servier.com/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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in each immune cell population and in relation to the 
response outcome. As demonstrated in Fig.  3, SeneVick 
enrichment was evident in CD4 + T-cells, CD8 + T-cells, 
NK and B-cells (CD19 +/CD20 +) and in relation to the 
response status we found that cells belonging to NR 
patients exhibited higher enrichment scores compared to 

responding patients. This phenomenon was independent 
of patients' age (p = 0.12) and other confounding factors 
such as age, sex, melanoma type and stage (Table S3). 
Next, we questioned whether we could assess an enrich-
ment threshold value for SeneVick that can discrimi-
nate Rs from NRs and predict treatment outcome in our 

Fig. 2  Validation of SeneVick in a human therapy-induced senescence model. a Left panel: Schema depicting the experimental procedure followed in 
day 0 to establish etoposide-induced cellular senescence in human fibroblasts. Middle panel: UMAP plot of human fibroblast scRNA data (GSE226225) 
displaying their clustering upon time (days), following etoposide treatment. Right panel: Senescence assessment in human WI-38 fibroblasts in day 0 
using the senescence detecting algorithm (SDA). Representative images of double staining of cells with the senescence markers GLF16 (red) and p16INK4A 
(green) and DAPI counterstain. The images were quantified using ImageJ (n = 3 biological replicates). Objective: 20x. Scale bar: 30 μm. Images of Ki67 
immunocytochemical staining (middle side). Positive cells were calculated by evaluating the strong brown nuclear signal for Ki67. Graphs (right side) 
depict the percentage of positive cells (%) for GLF16, p16INK4A and Ki67. Approximately 100 cells per optical field were counted, and ≥ 5 high-power fields 
per sample were used for the quantification. Statistical analysis was performed employing Wilcoxon nonparametric test. The data obtained represent 
means ± standard deviation. P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. Objective 20×, 40x. Scale bars: 30 μm and 60 μm respectively. b. Left panel: 
Schema depicting the experimental procedure followed in day 4 to establish etoposide-induced cellular senescence in human fibroblasts. Middle panel: 
UMAP plot of human fibroblast scRNA data (GSE226225) displaying their clustering upon time (days), following etoposide treatment. Right panel: Senes-
cence assessment in human WI-38 fibroblasts in day 4 using the senescence detecting algorithm (SDA). Representative images of double staining of cells 
with the senescence markers GLF16 (red) and p16INK4A (green) and DAPI counterstain. Images of Ki67 immunocytochemical staining (middle side). Graphs 
(right side) depict the percentage of positive cells (%) for GLF16, p16INK4A and Ki67. The quantification of the images, the evaluation of the proliferation 
and the statistical analysis were accomplished as mentioned above (a). Lower panel: Schema depicting the culturing conditions to establish etoposide-
induced cellular senescence in human fibroblasts across the 10 days of the experiment. c. Left panel: Schema depicting the experimental procedure 
followed in day 10 to establish etoposide-induced cellular senescence in human fibroblasts. Middle panel: UMAP plot of human fibroblast scRNA data 
(GSE226225) displaying their clustering upon time (days), following etoposide treatment. Right panel: Senescence assessment in human WI-38 fibroblasts 
in day 10 using the senescence detecting algorithm (SDA). Representative images of double staining of cells with the senescence markers GLF16 (red) 
and p16INK4A (green) and DAPI counterstain. Images of Ki67 immunocytochemical staining (middle side). Graphs (right side) depict the percentage of 
positive cells (%) for GLF16, p16.INK4A and Ki67. The quantification of the images, the evaluation of the proliferation and the statistical analysis were ac-
complished as mentioned above (a). "Fibroblast cells icons were provided by Servier Medical Art (https://smart.servier.com/), licensed under CC BY 4.0 (​h​
t​t​p​​s​:​/​​/​c​r​e​​a​t​​i​v​e​​c​o​m​​m​o​n​s​​.​o​​r​g​/​​l​i​c​​e​n​s​e​​s​/​​b​y​/​4​.​0​/)"

 

https://smart.servier.com/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Page 13 of 27Pantelis et al. Molecular Cancer          (2025) 24:308 

dataset. As explained in section "SeneVick's cut-off deter-
mination to predict immunotherapy response", we tested 
81 upper and lower threshold combinations per cell type, 
in order to find the threshold pair which allows for the 
optimal discrimination of Rs and NRs. Specifically, in 
CD8 + T-cells, an upper threshold of 55 and a lower 
threshold of 30 yielded an AUC = 0.75 with an optimal 
index cutoff of 1.45. In CD4 + T-cells, an upper threshold 
of 75 and a lower threshold of 30 gave an AUC = 0.73 with 
an index cutoff of 0.82. NK and B-cells (CD19+/CD20+) 
were excluded due to low cell numbers (less than 10) 
and excessive patient loss. SeneVick's observed predic-
tive performance reflects the contribution of senescence 
to immunotherapy resistance, in line with its established 
role as a key determinant of treatment outcome. Col-
lectively, these findings substantiate the predictive value 
of the SeneVick signature in melanoma immunotherapy 
response (Fig. 4).

The second approach included analysis of ex vivo clini-
cal material from melanoma patients that received single 
or combined immunotherapy, as monotherapy (Table 
S3). Particularly, PBMCs from Rs and NRs patients were 
obtained and senescence was assessed via flow cytome-
try, using the GLF16 senoprobe, an essential component 
of the SDA [3–5]. This approach was favored as circulat-
ing immune cells have been demonstrated to reflect to 

a large extent the tumor infiltrating ones and provide a 
reliable snapshot of the TME [56]. As expected, PBMCs 
originating from NR patients exhibited significantly 
higher senescence particularly in the CD4+ and CD8+ T-, 
and B-cell (CD19+/CD20+) subtypes compared to Rs 
(Fig.  5, Figures S5-S6). This was also the case for NK 
cells, though the lack of statistical significance was prob-
ably due to the low number of ex vivo samples. Increased 
senescence in CD4+ and CD8+ T-, and B-cells (CD19+/
CD20+) of NRs was subsequently confirmed in corre-
sponding tissue biopsies from these patients using the 
SDA, additionally suggesting that NRs exert consider-
ably increased immune cell senescence, in relation to 
Rs (Fig.  5, Figure S7). No association of immune senes-
cence in NRs with clinical features presented in Table 
S3 was identified. Overall, the observations from the in 
silico  and experimental analysis robustly support that 
NRs to immunotherapy can be distinguished from Rs 
based on their immune cell senescence status, irrespec-
tive of their age. Subsequently, RNA isolated from sorted 
GLF16+ (senescent) PBMCs of NR melanoma samples 
was enriched for SeneVick further strengthening the 
above findings (Fig. 6).

To exclude the possibility that immune checkpoint 
inhibition could be responsible for senescence observed 
in the immune cell populations, we implemented 

Fig. 3  SeneVick implementation in an in silico melanoma dataset reveals increased senescent immune cell populations in NRs compared to Rs to immu-
notherapy. UMAP plot displaying the distribution of the cells from the single-cell RNA sequencing data of the 48 Rs and NRs melanoma patients following 
immunotherapy, from the GSE115978 (n = 30) and GSE120575 (n = 18) datasets. The cells are categorized based on SeneVick enrichment (middle panel). 
Violin plots show significant SeneVick enrichment in CD4 + and CD8 + T-cells, NK and B-cells (CD19 +/CD20 +) of NRs versus Rs (peripheral panels). To 
visualize the senescence scores, the scores of the cells below the 10th percentile and the ones above the 90th percentile were clipped, in order to reduce 
the influence of the outliers on the color scale. Nominal p-values were calculated via Wilcoxon test: CD8+ T-cells (P < 6.4e-08), CD4 + T-cells (P < 3.4e-06), 
B-cells (CD19 +/CD20 +) (P < 3.6e-08) and NK cells (P < 0.016). *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001
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SeneVick exclusively in single cell data from melanomas 
before their treatment. We confirmed that NRs exerted a 
significantly increased senescence score in CD4+ T-cells 
(P = 6.1*10–5), CD8+ T-cells (P = 6.5*10–5) and NK cells 
(P = 0.011) compared to Rs, prior immunotherapy (Fig. 7). 
In B-cells (CD19+/CD20+) the difference was not statis-
tically significant, most probably due to the small number 
of cells of these populations when only the pre-treatment 
samples are considered.

Interestingly, within the CD4+ and CD8+ T-cell sub-
sets of NRs, a relatively small population of cells that 
was neither enriched for SeneVick nor proliferating drew 
our attention. Further zooming into this observation, 
we questioned whether these cells could be exhausted 
or anergic, as these T-cell states have been previously 
reported as a source of immune cell dysfunction [57]. 
In order to examine this issue, we extracted two signa-
tures consisting of the most potent markers identified in 
the context of exhaustion and anergy respectively (Table 
S5) and applied them in the CD4+ and CD8+ T-cell 

compartment of our melanoma cohort. Indeed, cell pop-
ulations negative for senescence, anergy and proliferation 
exerted an increased enrichment of the "exhaustion" sig-
nature while those showing SeneVick enrichment were 
simultaneously negative for exhaustion, anergy and pro-
liferation (Fig. 8). These observations highlight the fidel-
ity of SeneVick in distinguishing cellular senescence from 
other dysfunctional cell states within the immune cell 
compartment, thus allowing the elucidation of its role 
not only in cancer but also in a variety of other diseases.

Lastly, in order to gain further insights into the altera-
tions that senescence may impose in the TME of NRs, 
we analyzed the intercellular interplay of the immune 
cell subpopulations in Rs versus NRs. Particularly, in the 
formerly analyzed melanoma scRNA dataset of Rs and 
NRs patients we applied a cell communication analysis 
using CellChat [50]. The results showed numerous dif-
ferences of ligand-receptor communication probabilities 
among the immune cell types previously encountered 
(CD8+ and CD4+ T-cells, NK cells, and B-cells (CD19+/

Fig. 4  Workflow for applying SeneVick’s thresholding strategy to predict immunotherapy outcomes in Rs and NRs melanoma patients. a Methodologi-
cal Logic (Steps 1–4). Schematic illustration of the pipeline used to achieve optimal senescence thresholds for our signature. Step 1: Reasoning/Logic 
behind the need for computing a per-patient ratio. Step 2: Senescence needs to be effectively defined, and its boundaries identified and set (quartiles 
method—upper and lower percentile thresholds for each cell type). Step 3: Perform systematic grid search and ROC analysis across all threshold pairs to 
identify the optimal upper-lower combination. Step 4: Apply the optimal thresholds to classify patients and visualize responders versus non-responders. 
b. The equation for calculating the SeneVick Index. c. Distribution of per-patient SeneVick enrichment values, dotted lines demonstrate the upper and 
lower percentile thresholds. d Schematic representation of the ROC-based threshold optimization workflow and the corresponding AUC scores gener-
ated heatmaps for CD4+ and CD8+ T-cells. e. Application of the optimal thresholds showing patient-level high senescent/low senescent ratios for CD4+ 
(left) and CD8+ (right) T-cells with the red dashed line denoting the cutoff values (Youden’s Index) separating Rs from NRs
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CD20+) (Fig.  9a).  Further exploiting these data, we 
identified cell-to-cell interactions that promote effec-
tive immune responses and are intact in Rs and dys-
functional in NRs as well as immune cell interplays that 

favor an immunosuppressive environment and are active 
in NRs and inactive in Rs (Fig. 9b, Figure S8). The main 
events promoting effective immune responses in Rs 
include: active antigen presentation [58, 59], NK cells 

Fig. 5  Senescence assessment in an ex vivo melanoma cohort, consisting of peripheral blood and tissues, demonstrates increased immune cell senes-
cence in NRs compared to Rs to immunotherapy. a. Schematic overview of the experimental procedure followed to collect peripheral blood samples 
and tumor lesions from melanoma patients. Blood samples were processed with Ficoll-Paque density gradient centrifugation to isolate PBMCs. The latter 
were stained with a panel of fluorochrome-conjugated antibodies (Table S4) GLF16 and further analyzed with flow cytometry to assess GLF16+ (senes-
cent) immune cell populations. In turn, tissue samples were double stained with GLF16 and immune cell markers to assess immune cell senescence. b. 
Representative UMAP plot showing the clusters of the major PBMC subsets, i.e., CD4+ T cells, CD8+ T cells, B-cells (CD19+/CD20+), NK cells, NKT cells, and 
monocytes. Color coding reflects event density (blue, low; red, high). c. Violin plots display the percentages of GLF16+ (senescent) CD4 + and CD8 + T-
cells and B-cells (CD19+/CD20+), of responders and non-responders, *P < 0.05. d Representative images of double staining of cells with the senescence 
marker GLF16 (red) and CD4 (green), CD8 (green) and CD20 (green). DAPI counterstain. Scale bar: 30 μm. The images were quantified using ImageJ. e. 
Quantification of images presented in d. Statistical analysis was performed employing unpaired t-test. The data obtained represent means ± standard 
deviation. P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. Objective 20×, Scale bar: 30 μm. "Melanoma biopsy, human and vessel icons were provided by 
Servier Medical Art (https://smart.servier.com/), licensed under CC BY 4.0 (​h​t​t​p​​s​:​/​​/​c​r​e​​a​t​​i​v​e​​c​o​m​​m​o​n​s​​.​o​​r​g​/​​l​i​c​​e​n​s​e​​s​/​​b​y​/​4​.​0​/": 
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Fig. 6 (See legend on next page.)
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penetration through the vasculature enhancing their 
cytotoxic effects [60] and increased cytotoxicity through 
activation of various immune cell populations [61]. On 
the other hand, among the mechanisms involved in 
immunodeficiency in NRs are: increased cyclic adenos-
ine monophosphate (cAMP) production that leads to 
B-cell suppression and Treg recruitment [62], increased 
Treg accumulation resulting in blockage of cytotoxic 
responses [63], increased attraction of M2 tumor-asso-
ciated macrophages inducing T-cell inhibition [64, 65] 
and impairment of NK circulation and extravasation 
driving  defective NK cytotoxic effects [66] (Figure S8). 
Notably, deregulated expression of the ligand-receptor 
interactions presented in Figure S8 has been reported 
in the context of non-immune senescence cell types [1, 
67–69]. In line with the above, we demonstrated that 
senescent T-cells display impaired cytotoxic activity in 
relation to their non-senescent counterparts (Fig. 10). To 
the best of our knowledge this is the first time shown that 
senescent T-cells exhibit dysfunctional properties and 
drive defective immune responses. All the above and the 
fact that among the immune cell dysfunctional states the 
population of senescent cells was the most prevalent one 
in the scRNA NR subset (Fig.  8), support immune cell 
senescence as an important determinant for responsive-
ness to immunotherapy.

Discussion
Immunotherapy has undoubtedly provided major bene-
fits towards cancer treatment in the last decades, though 
in a significant portion of patients the treatment yields 
limited or even no responses [17]. Cancer-related immu-
nodeficiency has arisen as an important determinant of 
this outcome [70–72]. The latter has been linked to the 
accumulation of dysfunctional immune cell popula-
tions within the TME, such as exhausted and anergic 
ones while the contribution of cellular senescence is still 
poorly understood [73–76]. In the context of immunity, 
senescence has often been inaccurately assessed due to 
the application of debatable and non-specific markers 
[5]. As a consequence, the term immune cell senescence 
has been misused, its contribution to shaping the TME is 
still vague and probably underestimated, and its associa-
tion with the clinical course remains largely unknown [5]. 
In line with this notion, given that the senescence phe-
notype is complex and highly heterogeneous, the devel-
opment of new approaches to assess it more accurately 

complementing existing or evolving tools, will enhance 
our understanding on the cellular and molecular mech-
anisms involved, and its impact on human diseases and 
clinical outcomes [13, 77].

The current study investigated whether cellular senes-
cence is a source of immune cell dysfunction and is 
involved in the response to immunotherapy by applying 
two approaches that complement each other, an in silico 
one as well as a guideline senescence detecting pipeline 
(SDA), in melanoma patients. Melanoma was selected, as 
this type of malignancy is commonly treated with immu-
notherapy as a first option, especially in advanced stages. 
Moreover, this type of treatment, as shown (Fig. 7) is not 
linked to therapy-induced senescence in the immune 
cell compartment, in contrast to what is observed in tra-
ditional ones (irradiation or chemotherapy) that cause 
DNA damage-induced senescence and thus did not 
influence our observations [78, 79]. Regarding the first 
approach, we initially extensively validated SeneVick, a 
senescence molecular signature comprising 100 genes 
that we recently extracted, allowing the discrimination of 
senescence from aging in the liver [14] (Figure S1). The 
signature turned out to be highly sensitive and specific in 
discriminating non-senescent cells from senescent ones, 
irrespective of senescence type, tissue origin or species, 
even upon low senescence levels (Figs.  1–  2, Figures 
S3-S4). Of note, SeneVick is not a stochastic gene set, but 
rather a highly structured and evolutionarily curated net-
work of genes likely acting in coordination to mediate key 
aspects of cellular senescence (Figure S1). The combina-
tion of rare protein domains, motif periodicity, and chro-
mosomal distribution patterns not only provides insights 
into the mechanistic underpinnings of senescence but 
also hints at the potential translational value of SeneVick 
in biomarker development, aging research, and therapeu-
tic interventions targeting age-related pathologies.

We next exploited this specific and potent senescence 
detecting tool, as the first approach, to address the 
main query of our investigation related to the potential 
involvement of tumor-related immune cell senescence 
in the outcome of immunotherapy. By implementing 
SeneVick retrospectively in a scRNA dataset from 48 
melanomas treated exclusively with immune check-
point inhibitors (PD1, CTLA4 or combined inhibition), 
we observed a considerable signature enrichment in the 
immune cell populations of NRs, comprising CD4+ and 
CD8+ T-cells, NK and B-cells (CD19+/CD20+), that was 

(See figure on previous page.)
Fig. 6  SeneVick’s utility in identifying immune cell senescence that drives immunotherapy outcome in Rs and NRs melanoma patients. a. Schematic 
overview of the experimental procedure followed to collect peripheral blood samples from Rs and NRs melanoma patients. These blood samples were 
processed with Ficoll-Paque density gradient centrifugation to isolate PBMCs. b. The PBMCs of Rs and NRs melanoma patients were divided into two 
groups that were cultured and stained with mGLF16 according to the SDA. c. RNA extraction from sorted GLF16 + (senescent) PBMCs of our NR mela-
noma patients. d. SeneVick implementation in these RNA datasets showing a clear enrichment of the signature and additionally signifying the senescent 
nature of these immune cells in NRs
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independent of patient’s age and other clinical features 
(Fig.  3). Furthermore, a workflow to determine an opti-
mal cutoff value for discriminating between respond-
ers and non-responders was designed and applied, 

highlighting the predictive value of SeneVick in mela-
noma immunotherapy response (Fig. 4).

Subsequently, as the second approach, we verified the 
presence of senescent immune populations in peripheral 

Fig. 7  SeneVick identified significantly increased senescence in immune cell populations in NRs vs Rs prior treatment. UMAP plot displaying the distribu-
tion of the cells from the single-cell RNA sequencing data of the Rs and NRs melanoma patients prior to immunotherapy treatment, from the GSE115978 
and GSE120575 datasets. The cells are categorized based on SeneVick enrichment (middle panel). Violin plots show significant SeneVick enrichment in 
CD4+ and CD8+ T-cells, and NK cells of NRs versus Rs (peripheral panels). To visualize the senescence scores, the scores of the cells below the 20th per-
centile and the ones above the 80th percentile were clipped, in order to reduce the influence of the outliers on the color scale. Nominal p-values were 
calculated via Wilcoxon test.: CD8+ T-cells (P = 0.00065), CD4+ T-cells (P = 6.1e-5) and NK cells (P = 0.011). *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001
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blood mononuclear cells (PBMCs) from 11 Rs and 13 
NRs melanoma patients following the SDA via flow 
cytometry [3–5] (Table S4). Indeed, PBMCs originating 
from NR patients, particularly CD8+ and CD4+ T-cells, 
and B-cells (CD19+/CD20+) exhibited remarkably higher 
senescence compared to those from Rs (Fig. 5). This was 
also the case for NK cells, though the differences were 
not statistically significant, putatively due to the low 
number of ex vivo samples available. Interestingly, higher 
senescence levels were confirmed in these immune cell 
types within the corresponding tumour lesions of the NR 
patients compared to Rs (Fig. 5). These observations were 
also in line with those that emerged following SeneVick 
implementation in the in silico dataset. Of note, although 
senescent populations identified in the peripheral blood 
were quantitatively lower, they reflected qualitatively 
those in the TME in each case and overall, confirming the 
value of circulating immune cells as a reliable setting to 
assess cellular senescence in patients [80, 81] (Fig. 5, Fig-
ure S7). Additionally, when applying SeneVick in sorted 
senescent PBMCs from NR melanoma patients, a clear 
enrichment of the signature was observed (Fig. 6). At this 
point it should be mentioned that SenMayo and Frid-
man exhibit drawbacks that restrain their applicability 

for senescence related studies [15]. SenMayo  is heavily 
composed of  SASP-related transcripts, many of which 
participate in various other cellular processes such as 
inflammatory, stress, or immune activation responses, 
leading to cross-reactivity and false-positive enrichment. 
Importantly, senescence regulators such as  CDKN2A 
and  CDKN1A are absent, limiting its diagnostic depth. 
Conversely, the Fridman signature was derived from lit-
erature-based meta-analysis rather than high-throughput 
omics data, and many of the original reference studies 
relied on  indirect or non-specific senescence markers, 
including oxidative stress genes and cell cycle regula-
tors, whose interpretation is now considered insufficient 
to define true senescence [3, 22, 23]. As a result, when 
applied to non-senescent control datasets, both Sen-
Mayo and Fridman showed  spurious enrichment in 
the absence of senescence, whereas  SeneVick  correctly 
remained uninduced (Figure S3). This phenomenon 
likely reflects  inflated type I error  and "artificial enrich-
ment," where broadly inflammatory or stress-responsive 
genes overlap with unrelated biological noise. In contrast, 
SeneVick, developed directly from datasets validated 
with the  guideline SDA and the  GLF16  fluorophore, 
integrates multi-omics data (transcriptomic, proteomic, 

Fig. 8  SeneVick effectively discriminates Senescence from Exhaustion and Anergy in the melanoma TME. UMAP plot displaying the distribution of the 
cells from the single-cell RNA sequencing data of the CD4+ and CD8+ T-cells of the 48 Rs and NRs melanoma patients and categorizing cells after (a) the 
implementation of SeneVick (b) the T-Cell exhaustion signature and (c) the T-Cell anergy signature. As outlined, a subset of non-proliferating CD4+ and 
CD8+ T-cells in NRs exerts absence of enrichment of SeneVick and the T-cell anergy signature while exhibiting a T-cell exhaustion phenotype. To visualize 
the signature scores, the scores of the cells below the 10th percentile and the ones above the 90th percentile were clipped, in order to reduce the influ-
ence of the outliers on the color scale
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epigenomic) anchored on experimentally verified senes-
cent states [3, 14, 24]. This design ensures alignment 
between in silico and in vitro senescence detection, yield-
ing high specificity and biological interpretability, over-
all signifying the superiority of SeneVick for senescence 
related studies.

Our findings underscore the importance of immune 
cell senescence in driving responsiveness to immunother-
apy in melanoma and demonstrate that the tools imple-
mented herein in a complementary manner are highly 
efficient to identify those patients who are likely not to 
respond according to their senescence status. While indi-
cations in experimental models support that tumor cell 
senescence might influence the outcome of immunother-
apy, our study unveils for the first time the role of immune 
cell senescence within the TME in responsiveness to 
such an intervention in melanoma [82]. Interestingly, 
the in silico analysis identified a subset of non-prolifer-
ating CD4+ and CD8+ T-cells among NRs where SeneV-
ick signature was not enriched (Fig. 8). These cells were 
found to exhibit a T-cell exhaustion signature and were 
devoid of anergy markers. In line with this notion, NR 
patients of the clinical melanoma cohort with the low-
est senescence (GLF16) indices exerted characteristically 
the highest exhaustion levels. These findings denote the 
reliability of SeneVick and GLF16 staining in discerning 
cellular senescence from other dysfunctional T-cell states 

within the TME, a task that so far has been really chal-
lenging in phenotypic analyses due to significant overlap-
ping of the applied markers [5, 24]. Moreover, numerous 
differences of intercellular communication among the 
immune cell populations (CD8+ and CD4+ T-cells, NK 
cells and Β-cells (CD19+/CD20+) between Rs and NRs, 
were identified (Fig.  9a, Figure S8). Overall, cell-to-cell 
interactions mediating effective immune responses were 
intact in Rs and dysfunctional in NRs while the interac-
tions favoring an immunosuppressive context were found 
activated in NRs and inactive in Rs (Fig. 9b, Figure S8). 
Interestingly, their deregulation has been also identified 
in non-immune senescent cells [1, 68, 69]. In line with 
these findings, we also showed that senescent T-cells are 
incapable of eliminating tumor cells in relation to their 
non-senescent counterparts, associating directly T-cell 
senescence with impaired cytotoxicity (Fig.  10). Given 
that among the dysfunctional immune cell populations 
in the NRs the senescent one was the most prevalent 
(Fig.  8), underscores the role of senescence-mediated 
immune suppression in imposing resistance to immu-
notherapy (Fig. 9b). The latter is characterized by senes-
cence in CD8+ T-cells, and NK cells leading to loss of 
their cytotoxic activity, while senescence in CD4+ T-cells 
that exert a multifaceted role in cancer immunity, leads 
to a diminished pool of functional T-cells incapable 
of responding to new antigens [83–85]. Senescent cell 

Fig. 9  Analysis of the intercellular interplay of the immune cell subpopulations in Rs versus NRs melanoma patients following immunotherapy. a. Cell 
chat derived circular representation of cell-to-cell interactions (CD4+ T-cells, CD8+ T-cells B-cells, NK cells and Tregs) which are active in the ICI responder 
group and are responsible for the effective immune responses depicted. Each arrow displays the Ligand-Receptor (L-R) interactions for the different 
ligand-sender cell types. The main events promoting effective immune responses in Rs include: active antigen presentation [58, 59], NK cells penetration 
through the vasculature enhancing their cytotoxic effects [60] and increased cytoxicity through activation of various immune cell populations [61]. b. Cell 
chat derived circular representation of cell-to-cell interactions (CD4+ T-cells, CD8+ T-cells, B-cells, NK cells and Tregs) which are active in the ICI Non-Re-
sponder group and are responsible for the ineffective immune responses depicted. Each arrow displays the L-R interactions for the different ligand-sender 
cell types. Among the mechanisms involved in immunodeficiency in NRs are: increased cAMP production that leads to B-cell suppression and Treg re-
cruitment [62], increased Treg accumulation resulting in blockage of cytotoxic responses [63], increased attraction of M2 tumor-associated macrophages 
inducing T-cell inhibition [64, 65] and impairment of NK circulation and extravasation driving defective NK cytotoxic effects [66]. c. Schematic illustration 
representing the altered immune cell interactions in NRs compared to Rs following immunotherapy. "Cell icons were provided by Servier Medical Art ​(​​​h​t​
t​p​s​:​/​/​s​m​a​r​t​.​s​e​r​v​i​e​r​.​c​o​m​/​​​​​)​, licensed under CC BY 4.0 (​h​t​t​p​s​:​​​/​​/​c​r​e​a​t​​i​v​e​​c​o​m​​m​o​n​​​s​.​​o​r​​g​​/​l​i​​c​e​n​s​​​e​​s​/​​b​​y​/​4​.​0​/)"
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Fig. 10  Ineffective immune responses of senescent T cells against melanoma cells. a Schematic overview of the experimental procedure followed to 
collect peripheral blood samples from a young donor (left panel) and their co-culture with A375 melanoma cells. This blood sample was processed with 
Ficoll-Paque density gradient centrifugation to isolate PBMCs. In the following steps, the PBMCs were stratified into two subgroups, with the second one 
being subjected to oxidative stress-induced cellular senescence. The two subgroups were co-cultured with A375 melanoma tumor cells (right panel) in 
order to evaluate their cytotoxic abilities. b The two aforementioned groups of PBMCs were stained with GLF16 according to the SDA and CD3. Repre-
sentative images of double staining of cells with the senescence marker GLF16 (red) and CD3 (green), DAPI counterstain. Scale bar: 30 μm. The images 
were quantified using ImageJ (n = 3 biological replicates). c. Graphs (right side) depict the percentage of positive cells (%) for GLF16. Approximately 100 
cells per optical field were counted, and ≥ 5 high-power fields per sample were used for the quantification. Statistical analysis was performed employing 
Wilcoxon nonparametric test. The data obtained represent means ± standard deviation. P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. d T-cell cytotoxic-
ity assays from the corresponding co-cultures of ROS-induced senescent T-cells and untreated T-cells. "Cell icons and blood samples were provided by 
Servier Medical Art (https://smart.servier.com/), licensed under CC BY 4.0"
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populations, particularly CD8+ and CD4+ T-cells, can 
secrete a variety of SASP factors (pro-inflammatory 
cytokines, chemokines and growth factors), that can 
remodel the immune landscape and influence the TME 
towards tumour progression [86–88]. In this context, 
tumour infiltrating senescent T lymphocytes can affect 
B-cell (CD19+/CD20+) activation and their subsequent 
differentiation into CD27+/CD38+ cells, ultimately lead-
ing to a deficiency in antibody production and inefficient 
adaptive responses [86–88]. The latter is also a potential 
outcome of B-cell (CD19+/CD20+) senescence as identi-
fied in our analysis in NRs. Regarding the limitations, our 
investigation should be regarded as a starting point aim-
ing to unveil the role of immune cell senescence within 
the TME and its involvement in immunotherapy out-
come. As such, it needs to be expanded not only in mela-
noma but also in a wide spectrum of other malignancies 
and irrespective of whether Immune Checkpoint Inhibi-
tion (ICI) is the first-line treatment or follows conven-
tional ones that can trigger senescence [17, 89, 90].

While there seems to be a relation between aging and 
immune senescence [88], our findings suggest that cancer 
cells can shape a microenvironment to promote immune 
cell senescence as a strategy for immune evasion, inde-
pendent of patients' age, addressing thus a debatable 
matter. Potential mechanisms involved are summarized 
in Figure S9. Nevertheless, these mechanisms should be 
regarded cautiously, as markers applied for senescence 
identification in these studies can also be evident in other 
immune cell dysfunctional states [5].

Given the plasticity of immune cells and that anergy or 
exhaustion reflect in principle progressive and irrevers-
ible states acquired upon chronic infections or cancer, 
immune cell senescence emerges as an attractive option 
to rejuvenate the immune system in order to restore its 
functionality, increasing thus the efficacy of immuno-
therapy. In fact, strategies for immune cell reinvigoration 
that target the above molecular mechanisms and path-
ways as well as the elimination of the toxic and immuno-
suppressive senescent cell compartment in the TME are 
gaining increased attention [5, 91]. Regarding the latter, 
a recently reported innovative senolytic platform that 
allows for selective removal of senescent cells without 
side effects paves the way [92]. This advancement under-
scores the importance of investigations such as the cur-
rent one that exploits efficient senescence detecting tools 
to characterize patients according to their senescence 
status which drives their responsiveness to therapy.

Conclusion
Immunotherapy has significantly improved cancer treat-
ment. However, not all cancer patients benefit from 
such interventions, rendering the elucidation of differ-
ences between responders and non-responders at the 

molecular/cellular level an imperative task. Dysfunc-
tional immune cell states such as T-cell exhaustion and 
anergy have been linked to failure of checkpoint inhibi-
tors, while the role of immune cell senescence remains 
elusive. In the current study, we investigated this issue 
in melanomas where immunotherapy is applied as a 
first line treatment, following two senescence detecting 
complementary approaches. We found for the first time 
that melanoma patients who did not respond to immu-
notherapy exerted increased cellular senescence in their 
CD8+ T-cells, CD4+ T-cells, B-cells (CD19+/CD20+) and 
NK cells compared to responders. High senescence levels 
in non-responders were independent of patients' age and 
not an outcome of immunotherapy, in contrast to con-
ventional anti-cancer treatments. Overall, our findings 
support cellular senescence of immune cells within the 
tumor microenvironment, as a potent determinant of the 
response to immunotherapy.
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NRs patients. Middle column: Pie charts depicting the recipient cells with 
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Supplementary file 9. Figure S9: Overview of cancer driven mechanisms 
inducing immune cell senescence in the TME. Schematic illustration of pu-
tative mechanisms involved in cancer promoted immune cell senescence 
in the tumor microenvironment. Due to cancer cell’s accelerated growth 
and metabolism the TME is characterized by hypoxia, high levels of reac-
tive oxygen (ROS) and nitrogen (RNS) species and lipids that solely or in 
concert induce DNA damage response, eventually triggering immune cell 
senescence [94]. Interestingly, tumor cells have been reported to induce 
senescence in T-cells by c-AMP delivery or by transferring mitochondria 
with mtDNA mutations [95, 96]. Moreover, tumor-derived immunoglob-
ulin-like transcript 4 (ILT4), an inhibitory molecule of the immunoglobulin 
superfamily, has been shown to induce T-cell senescence via activation of 
ERK1/2 MAPK signaling [97]. Tumor-associated Tregs can also induce T-cell 
senescence in responding naïve/effector T-cells, by promoting mitochon-
drial disruption and p38/ERK1/2 MAPK signaling activation as well as via 
increased glucose consumption and metabolic competition [98].
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