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Abstract

Background Immunotherapy has significantly improved cancer treatment. However, it is not effective in all cancer
patients, rendering the need to further delineate the differences among responders and non-responders at the
molecular and cellular level. Unresponsiveness to immunotherapy has been attributed to dysfunctional immune cell
states such as T-cell exhaustion and anergy, whereas the contribution of cellular senescence remains elusive. Herein,
we have investigated the role of immune cell senescence in the response to checkpoint inhibitors in melanomas
where these immunotherapies are applied as a first line treatment.

Methods Two senescence detecting complementary approaches were utilized in a case control study we
conducted. First, we implemented a senescence molecular signature we developed, termed "SeneVick',
retrospectively in a single cell RNA-seq dataset from melanoma patients who received immunotherapy. Prior to this
analysis, the signature was extensively validated in a variety of cell/tissue contexts, senescence types and species.
Second, cellular senescence was assessed via an established experimental algorithmic approach in circulating
immune cells of an analogous melanoma clinical cohort.

Results Melanoma patients who did not respond to immunotherapy exhibited increased cellular senescence

in the CD8 +T-cell, CD4 +T-cell, B-cell (CD19+/CD20+) and NK cell compartments compared to responders. This
phenomenon was independent of patients’clinical features (age, sex, melanoma type, stage) and not an outcome
of immunotherapy, in contrast to conventional anti-cancer treatments. Interestingly, alterations of cell-to-cell
interactions among the immune sub-populations in non-responders compared to responders were identified,
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supporting, along with cytotoxicity assays, that senescent immune cells display immunosuppressive properties

driving defective immune responses and treatment failure.

Conclusion Overall, our findings provide evidence that cellular senescence within the immune cell compartment
of the tumor micro-environment is a potent determinant of the response to immunotherapy and pave the way for
strategies targeting it as promising approaches to improve the outcome of such interventions.

Keywords Immunotherapy, Immune cell senescence, Responders, Non-responders, Melanoma, SeneVick, GLF16,

Senoprobe

Background

Following its initial discovery by Hayflick and Moorhead
more than 60 years ago, as "aging at the cellular level",
noteworthy advancement has been achieved towards
characterizing a cellular stress response mechanism
that is distinct from the aging process, termed cellular
senescence [1]. Physiologically and on a transient basis,
senescence acts as a homeostatic mechanism, limiting
the propagation of damaged cells in tissues. In contrast, if
senescent cells are not timely eliminated by the immune
system, they persist and accumulate, resulting in detri-
mental outcomes such as age-related pathologies and
aging [1].

For many years, a major drawback in the senescence
field was the absence of reliable markers to effectively
recognize senescent cells [2]. Identification of senes-
cence relied mainly on the Senescence-Associated
B-Galactosidase (SA-B-Gal) method, which is appli-
cable only in cell culture and prone to false outcomes
[3, 4]. Moreover, other indirect and non-specific senes-
cence markers were commonly applied. Overall, these
approaches often resulted in misleading conclusions [5].
In order to bypass these obstacles, we and others recently
proposed a senescence detecting algorithm (SDA) that
increases the sensitivity and specificity of senescence
identification. It also allows for its accurate verification
in any kind of biological sample, including formalin-fixed
and paraffin-embedded (archival) material [1, 4]. An
essential component of SDA is the detection of lipofus-
cin, a hallmark and a common denominator of all senes-
cent cells [1, 4, 5].

The implementation of SDA retrospectively in clini-
cal samples unveiled that cellular senescence is impli-
cated in various pathologies such as cancer, COVID-19
disease, and giant cell arteritis (GCA), denoting that its
role in the pathophysiology of human diseases largely
remains encrypted and overlooked [1, 6-8]. Interest-
ingly, in cancer, one of the most common age-related dis-
eases, it has been demonstrated that senescent cells act
as a source of tumor recurrence via the senescence-asso-
ciated secretory phenotype (SASP) and/or the "escape
from senescence” phenomenon [1, 4, 9, 10], suggesting
its involvement in the clinical outcome of cancer patients
[11]. However, implementation of SDA in retrospective

analyses will take time to provide results as it is labor-
intensive, and in many cases the material is limited or
even exhausted. Moreover, given the complex and largely
heterogeneous nature of the senescence phenotype,
tools that facilitate towards precise senescence identi-
fication are necessary to further elucidate its role in the
pathophysiology and clinical course of human patholo-
gies, such as cancer [12, 13]. These conundrums along
with the unexplored for senescence abundant single cell
RNA-seq (scRNA-seq) data available databases and the
important drawbacks of existing senescence detection
pipelines led us to develop a molecular signature, from
now on termed "SeneVick", that could complement SDA
in identifying senescence accurately [14, 15]. As demon-
strated, following extensive validation, SeneVick proved
a highly efficient tool in demarcating non-senescent
from the senescent state. Immunotherapy exemplified
by checkpoint inhibitors has drastically influenced can-
cer therapy in the last decades [16]. These treatments
aim to increase the efficacy of immune cells against the
tumor. However, current cancer immunotherapies are
not effective in all patients [17]. Cancer-induced immu-
nodeficiency is an important determinant of the response
to such interventions, however, the molecular mecha-
nisms though governing these processes remain to a large
extent, unresolved [18]. Thus, an interesting matter that
emerges regards the biological events that distinguish
Responders (Rs) from Non-Responders (NRs) to immu-
notherapy. Dysfunction of the immune cell compartment
within the tumor microenvironment (TME), as an out-
come of immune cell exhaustion or anergy, has been pro-
posed while the involvement of immune cell senescence
remains uncharted [5]. Herein, we address this topic
by implementing in a complementary manner experi-
mental and in silico approaches, signifying that NRs to
immunotherapy melanoma patients exhibit increased
immune cell senescence in CD4+ and CD8+ T-cell, B-cell
(CD19+/CD20+) and natural killer (NK) cell populations
compared to Rs. In line with these findings, we showed
for the first time that senescent T-cells demonstrate dys-
functional properties favoring immune suppression and
resistance to immunotherapy.
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Materials and methods

Experimental planning

Prior to addressing the main question of our study,
whether immune cell senescence drives responsiveness to
immunotherapy in melanoma patients ("I silico datasets
and ex vivo melanoma setting"), we extensively validated
our molecular senescence signature, SeneVick, in in silico
(Sections: "In silico setting”, "Analysis of the senescence
signature SeneVick" and "Gene set enrichment analysis")
and experimental senescence models (Sections: "In vitro
setting”, "Senescence assessment”, "Telomere analysis",
"Transcriptomics” and "Cytotoxicity assay").

Senescence models

In silico setting

The analysis of the senescence control datasets, which
included scRNA-seq data from mice of different age
groups and human fibroblasts (WI-38) [19, 20], was
conducted as outlined below: The scRNA-seq data
(GSE132042 and GSE226225) for the mice cohort and
human fibroblasts (WI-38), respectively, were down-
loaded from Gene Expression Omnibus (GEO). Particu-
larly, the first control dataset [19] (GSE132042) contained
scRNA-seq data from various tissues of mice belonging
to six age groups, from 1 to 30 months. The second data-
set (GSE226225) includes scRNA-seq data from human
fibroblasts undergoing radiation- or therapy-induced
senescence following Etoposide (ETO) treatment [20].
Cells with less than 1000 detected genes were omitted
from the analysis. The gene counts were decontami-
nated using DecontX [21] (v1.0.0). Seurat (v5.0.1) was
used for the main part of the analysis. The quality control
steps included filtering of cells that had a mean expres-
sion>272.5-1 of selected housekeeping genes (Table S1)
and the mitochondrial counts were removed. The cells
were integrated with the fastMNN function (only in the
fibroblast dataset) and clustered using a clustering reso-
lution of 0.3 and 40 principal components.

In the mouse senescence control dataset, which con-
tained a publicly available single-cell transcriptomic atlas
that was extracted across the lifespan of Mus musculus
[19] linear models were used to determine whether there
is a linear relationship between the timepoints and the
senescence signature score. A Wilcoxon test was con-
ducted per cell type between those two groups, in order
to determine senescence score differences.

The senescence enrichment score of each signature
[14, 22-24] (SeneVick, SenMayo and Fridman) in human
fibroblasts derived from the human senescence control
dataset [20] (GSE226225) was compared via Wilcoxon
test. Furthermore, we compared the enrichment levels of
the aforementioned signatures in the human fibroblasts,
in which the induction of senescence was accomplished
with different senescence inducers (IR-irradiation, ETO
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treatment), and significance was also assessed via Wil-
coxon Test. Segmented linear regression (segmented R
package, v.2.1.3) was used in order to model the increase
of senescence enrichment scores of the different senes-
cence signatures across several timepoints, following
ETO treatment.

In vitro setting

Human diploid WI-38 fibroblasts (purchased with from
ATCC, CCL 75) and Primary Human Fibroblasts (kindly
provided by the Laboratory of Cell Proliferation and
Ageing, NCSR "Demokritos" ) of the three different age
groups (7-, 35-, 75- years) were cultured in Dulbecco’s
modified Eagle medium (DMEM, Biowest, L0104) sup-
plemented with 10% FBS and 1% antibiotics. Cell cultures
were maintained in an incubator at 37° C and 5% CO2.
For ETO-induced senescence, human diploid WI-38
fibroblasts were treated with 50 pM ETO (for six days),
then cultured in regular medium without ETO-contain-
ing medium for four additional days. In the time course
experiments, cells were collected at 0 (untreated), 1, 2, 4,
7, and 10 days after ETO treatment.

Human Peripheral blood mononuclear cells (PBMCs)
from healthy donors were isolated using Ficoll (1.077 g/
ml) following standard procedures [25]. Cells were cul-
tured in RPMI medium (Roswell Park Memorial Institute
1640 Medium) supplemented with 5% Cell-Vive™ T-NK
Xeno-Free Serum Substitute (Biolegend) and 200 IU/ml
hIL-2. T-cells were subsequently isolated using the Mojo-
Sort™ Human CD3 T-Cell Isolation Kit (Biolegend) and
then they were treated with vehicle (PBS for non-senes-
cent control cells) or cisplatin (100 uM) for 48 h to induce
ROS-mediated senescence [26, 27] (senescent T-cells).

Analysis of the senescence signature SeneVick

Gene ontology-based functional annotation

Gene Ontology (GO) enrichment analysis was performed
to identify significantly overrepresented biological
themes in SeneVick among its genes. GO is a hierarchi-
cally structured vocabulary encompassing three domains:
Biological Process (BP), Molecular Function (MF), and
Cellular Component (CC). Each domain captures dif-
ferent facets of gene function, allowing comprehensive
annotation across cellular contexts. GO annotations and
enrichment testing were conducted using g: Profiler [28]
and Database for Annotation, Visualization and Inte-
grated Discovery (DAVID v.6,8) [29] Knowledgebase
v2023q4 as updated quarterly. Analyses were carried out
using the Homo sapiens reference background (Ensembl
GRCh38), and significance was determined using a
hypergeometric test followed by Benjamini—Hochberg
false discovery rate (FDR) correction. Only GO terms
with FDR-adjusted p-values<0.05 were statistically sig-
nificant. To complement the GO-based analysis, pathway
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annotations were retrieved from Kyoto Encyclopedia of
Genes and Genomes (KEGG), Reactome, and BioCarta-
databases. These included canonical signaling pathways
relevant to senescence, such as the p53/p21WAFL/CIPL
axis, NF-kB activation, mitochondrial metabolism, SASP
regulation, and DNA damage response (DDR). Each gene
was mapped to one or more functional categories based
on GO and pathway term enrichment.

Construction of functional association matrix

A binary gene-function matrix was constructed in which
rows represented individual genes and columns repre-
sented significantly enriched GO terms and pathways.
Each matrix entry was coded as "1" if the gene was asso-
ciated with a given term, and "0" otherwise. To reduce
dimensionality and remove redundancy due to overlap-
ping terms, Principal Component Analysis (PCA) was
applied, retaining components explaining>90% of the
total variance. To delineate distinct biological modules
within the senescence signature, unsupervised cluster-
ing was performed on the reduced gene-function matrix.
Two complementary approaches were applied:

1. K-means clustering [30] was implemented using the
Euclidean distance metric. The optimal number of
clusters (k) was selected by evaluating the elbow plot
and silhouette score across a range of k -values. This
method identified non-overlapping clusters of genes
sharing similar functional annotation profiles.

2. Agglomerative hierarchical clustering was
performed using Ward’s linkage method, producing
a dendrogram to evaluate hierarchical relationships
among functional groups. Final clusters were
defined by cutting the dendrogram at a level
that maximized within-cluster similarity while
preserving between-cluster separation.

Genes associated with multiple terms were assigned to
the cluster in which they showed the highest cumulative
enrichment score. In cases of ambiguity, gene member-
ship was resolved based on semantic similarity scoring,
calculated using the GOSemSim R package. This enabled
biologically meaningful classification based on ontologi-
cal proximity to core senescence processes. All analy-
ses were conducted in R version 4.3.0 and Python 3.10,
using the packages clusterProfiler, factoextra, GOSem-
Sim, scikit-learn, and SciPy. GO and pathway databases
were accessed in June 2025 to ensure current annotation
status.

Senescence assessment

Senescence assessment was performed in cells following
double staining with the senescence detecting reagent
GLF16 that we generated along with related senescence
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markers, and in tissues by applying the senoprobes GL13
[31] and GLF16, according to the SDA [3, 24, 32], as
follows:

GLF16 staining/Immunofluorescence

Primary human skin fibroblasts of three different age
groups (7-, 35-, and 75- years) or human diploid WI-38
fibroblasts were seeded (2x10° cells/well) on coverslips
(12-mm diameter). The latter were subsequently treated
with Etoposide for senescence induction [20]. In both
cases, coverslips were subsequently removed; cells were
washed, fixed (4% PFA/PBS, 10 min, 4 °C) and permea-
bilized (Triton 0.3%/PBS 15 min). Blocking of non-spe-
cific epitopes was performed using sheep serum (dilution
1/40, S22, Merck Millipore). Cells were subsequently
stained for lipofuscin using GLF16 for 10 min (70 mg/
ml) avoiding light exposure as previously described [24].
Coverslips were washed 3 times for 10 min each with
GLF16 diluent (2.5% DMSO/2.5% Tween-20/95% PBS).
Then, cells were incubated with anti-p16™N** (16D5, QR
Labs) or -p21YAFVCIPL (19475, Cell Signaling) antibodies
for 1 h at room temperature (RT), followed by applica-
tion of appropriate secondary antibodies (for 1 h in RT).
Nuclei were finally visualized by DAPI. Cells were washed
(30s with dH,0) and coverslips were mounted onto slides
for microscopy. T-cells were isolated from PBMCs and
treated as described in section "In vitro setting". Cyto-
spins of 1x 10° cells were prepared using the cytocentri-
fuge (400 g, 5 min) and stained with GLF16 according to
the SDA mentioned in 2.4.1.

In the case of tissues, 4-pm-thick sections of forma-
lin-fixed and paraffin-embedded tissues (FFPE) were
obtained, de-paraffinized and hydrated. Antigen retrieval
was performed by immersing samples in 10 mM of cit-
ric acid buffer (pH 6.0) in a steamer for 15 min. Tissue
samples were cooled down and washed with PBS. Block-
ing of non-specific binding for the epitopes was done by
applying normal goat serum for 1 h at room tempera-
ture (dilution 1:40, Abcam, Cambridge, UK ab138478).
The samples were incubated with the following primary
antibodies overnight at 4°C: CD4 (Ready to use, M7310,
Dako), CD8 (1:20, 144B, Dako) and CD20 (1:150, 250586,
Abbiotech). Positive cells were visualized using sec-
ondary goat anti-mouse (Abcam, ab6785, polyclonal)
and goat anti-rabbit immunoglobulin G and heavy and
light chains (IgG H&L antibody, Alexa Fluor 488; 1:500;
Abcam, ab150077, polyclonal) for 1 h. Upon staining
with primary and secondary antibodies, tissue sections
were stained for lipofuscin applying GLF16 for 10 min
(70 pg/ml) in the dark. Excess compound was removed
by washing three times with the GLF16 diluent (2.5%
DMSO/2.5% Tween 20/95% PBS). Nuclei were finally
visualized by DAPI staining. The samples were washed
(30 s with dH,0), and coverslips were mounted onto
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slides for microscopy. Samples were imaged using a Leica
TCS-SP8 confocal microscope.

GL13 staining

FFPE sections from melanomas were de-paraffinized
and hydrated. Subsequently, antigen retrieval was car-
ried out as described in section "Senescence assessment”
and after blocking of non-specific binding sites with goat
serum (Abcam ab1388478, in 1:40) and Hydrogen Perox-
ide (H,0,), (Dako REAL EnVision Detection System kit
Cat.no: K5007, Santa Clara, CA, USA) the tissues were
incubated sequentially in 50% and 70% ethanol for 5 min
each, respectively. Following application of GL13 on each
tissue, the samples were incubated at 37 °C for 10 min. At
the end of this step, the samples were washed with 50%
ethanol for 2—3 min, with PBS and then Triton-X 0.3%/
PBS was applied for 5 min in order to remove any reagent
precipitates. Tissues were washed again with PBS and
anti-biotin antibody (in dilution 1:300, Hyb-8, ab201341,
Abcam, Cambridge, UK) was applied and incubated for
1 h at RT. The mean percentage of GL13-positive cells
was assessed from>5 high-power fields (Objective 40x)
per sample using a ZEISS Axiolab5 optical microscope.

Immunocytochemistry—Immunohistochemistry

Cells from each cell line were seeded on coverslips as
mentioned above. For the Immunocytochemistry (ICC),
the cells were permeabilized using Triton-X 0.3%/PBS for
15 min at RT, followed by the blocking of non-specific
binding sites with goat serum [33] (Abcam ab138478,
in 1:40) for 1 h at RT and H,O, for 18 min. Cells were
then incubated with Ki67 (Cat.no: abl16667, dilution
1:250, SP-6, Abcam, Cambridge, UK) for 1 h at RT. Posi-
tive cells were visualized using the Dako REAL EnVision
Detection System kit (Cat.no: K5007, Santa Clara, CA,
USA) according to the manufacturer’s instructions using
3,3’-Diaminobenzidine (DAB) (brown color). Cover-
slips were counterstained with hematoxylin, sealed and
observed under a ZEISS Axiolab5 (Munich, Germany)
optical microscope with 20x or 40x objectives.

Regarding the FFPE material (Section: "GLF16/Immu-
nofluoresence"), sections were incubated with anti-CD4,
anti-CD8 and anti-CD20 antibodies, overnight at 4°C,
respectively: CD4 (Ready to use, M7310, Dako), CD8
(1:20, 144B, Dako) and CD20 (1:150, 250586, Abbiotech).
Positive cells were visualized using the Dako REAL EnVi-
sion Detection System kit (Cat.no: K5007, Santa Clara,
CA, USA) according to the manufacturer’s instructions
using 3,3-Diaminobenzidine (DAB). Sections were coun-
ter-stained with hematoxylin and observed using a ZEISS
Axiolab 5 optical microscope with a 20x objective, 25 pum
scale bar.
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Telomere analysis

Telomere length measurement

Relative telomere length determination (T/S) refers to the
ratio of telomere (T) hexamer repeat sequence TTAGGG
signal, to autosomal single copy gene (S) signal. To assess
this, cells were collected and frozen at-80 °C until all
samples were ready for simultaneous DNA extraction
and analysis. Genomic DNA was extracted using the
T3010 Monarch Spin gDNA Extraction Kit (T3010, New
England Biolabs). Telomere ("I") and single copy gene
(human albumin, "S") lengths were measured via real-
time PCR (Roche LC480, Roche Diagnostics Corpora-
tion, Indianapolis, IN). Samples were loaded on 96-well
plates and run in triplicate. Repeated measures of the T/S
ratio in the same DNA sample gave the lowest variabil-
ity when the sample well position for T-PCR on the first
plate matched its well position for S-PCR on the second
plate. When one sample's duplicate T/S values differed by
greater than 7%, the sample was run a third time, and the
two closest values were averaged to give the final result.
This ratio was subsequently normalized by control DNA
samples to yield relative standardized T/S ratios propor-
tional to average telomere length. A 5-point standard
curve (made of pooled reference DNA samples (100 to
6.25 ng/ul) and randomly located internal QC sample
replicates (n=5), were utilized as calibrator samples, to
guide analysis and indicate overall quality of assay perfor-
mance. Additionally, a non-telomeric control was added
to random well locations to provide a unique fingerprint
for each plate. The primers (100pM, Integrated DNA
Technologies Coralville, IA) used were the following:

i telomeric assay:
TelG [5-ACACTAA GGTTT GGGTT TGGGTT
TGGGTTT GGGTT AGTGT-37].
TelC [3'-T GTTAGG TATC CCTA TCCCTAT CCC
TATCC CTA TCCC TAACA-5']

ii.  single-copy gene (Albumin) assay:
AIbU [5-C GGCGG CGG GCGG CGCGG GCTG
GGCGG AAATG CTGCACA GAAT CCTTG-3]
AIbD [5-G CCCGG CCC GCCGC GCCC GTCC
CGCCG GAAAA GCAT GGTC GCCTGTT-3]
PCR was performed using 20ulL reaction volumes
consisting of: 10 uL of 2X Luna® Universal qPCR
Master Mix (NEB, US), 7.0 uL. of Molecular
Biology Grade (MBG) Water, and 0.5 uL of 1 pM
primers mix. Thermal cycling was performed on
a LightCycler 480 (Roche) where PCR conditions
were (i) T (telomeric) PCR: 95°C hold for 5 min,
denature at 98°C for 15 s, anneal at 54°C for 2 min,
with fluorescence data collection, 35 cycles and
(i) S (single-copy gene, Alb) PCR: 98°C hold for
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5 min, denature at 98°C for 15 s, anneal at 58°C for
1 min, with fluorescence data collection, 43 cycles.
Ct-values of triplicates were averaged, if meeting

a CV threshold of less than 2%. The telomere (T)
concentration was divided by the albumin (Alb)
concentration (S) to yield a raw T/S ratio. Raw T/S
ratios were subsequently normalized by average
internal QC calibrator samples within the same
plate set. Z-scores were calculated to adjust RTL in
case differences in dynamic range are introduced by
systematic differences between batches.

Telomeric peptide nucleic acid (PNA) FISH

Telomeric PNA Fluorescence In Situ Hybridization
(FISH) was held according to the latest established pro-
tocols [34]. The primary skin human fibroblast cells of
the three different age groups (7-, 35- and 75- years) were
cultured in a confluency of 60-80% and they were split
at 48-72 h before harvesting for metaphase chromo-
somes. Cell pellets were fixed with methanol and acetic
acid and dropped on wet slides for overnight incubation.
Cells were subsequently re-hydrated using PBS (15 min,
RT) and subsequently incubated with RNase A (100 pg/
ul, Merck KGaA, Darmstadt, Germany) for 1 h at 37 °C.
Chromosome preparations were fixed in 3.7% formalde-
hyde (2 min) and washed with TBS (twice, 5 min each).
Chromosome preparations were digested with pepsin
(1 mg/ml, in 10 mM HCL, pH 2) at 37 °C for 10 min
and then washed twice with TBS and finally dehydrated
by serial incubations in 70, 85, and 96% cold ethanol
and air-dried. Telomere-specific hybridizations were
accomplished employing Cy3-labeled (TTAGGG)3 and
FITC-labeled (CCCTAA) 3 PNA probes (BioSynthesis,
Lewisville, TX). After two consecutive washing steps,
one in PBS and one in Wash solution (0.1 M Tris—HCL,
0.15 M NaCl, for 5 min. Subsequently, 10 ul of hybrid-
ization mixture comprising of 0.2—-0.8 uM PNA telomeric
probes, 70% formamide, and 10 mM Tris, pH 7.2 (Cyto-
cell, Oxford Gene Technology, UK), was applied to the
marked area of the slide. The latter underwent heating
at 80 °C for 5 min during the denaturing FISH protocol,
whereas this step was excluded in the non-denaturing
FISH procedure. Slides from both denaturing and non-
denaturing FISH procedures were incubated overnight
at 37 °C in a humid environment. On the following day,
slides were sequentially washed: once in PBS for 15 min,
once in 0.5x Saline Sodium Citrate buffer (SSC) contain-
ing 0.1% SDS at 72 °C for 2 min, once in 2x SSC (pH 7)
supplemented with 0.05% Tween-20 at room tempera-
ture for 30 min, and twice more in PBS for 15 min each.
Preparations were then counterstained and mounted
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with Vectashield containing DAPI (Vector Laboratories
Inc). Images were captured under an Axion Imager Z1
Zeiss fluorescence microscope (63x objective) and ana-
lyzed using MetaSystems Isis software. The signal of the
centromere of chromosome 2 functioned as the internal
reference control. Human centromere 2-specific PNA
probes labeled with Cy3 or FITC were provided from
DAKO Cytomation (Glostrup, Denmark).

Transcriptomics and analysis

Transcriptomics

Primary human Fibroblasts of 7-, 35-, and 75-years old
donors and PBMCs from Rs and NRs patients isolated
as described in section "In vitro setting” were seeded
onto 10-cm cell culture plates (70% confluency). Cells
were collected and total mRNA was extracted using the
NucleoSpin RNA mini kit (Macherey—Nagel, Germany).
RNASeq libraries were prepared with the NEBNext ultra
II directional RNASeq kit (Reverse strand specificity) and
single end sequenced at 101 bp length with the Illumina
NovaSeq 6000 platform, in the Greek Genome Center of
BRFAA.

Raw data were mapped to the human genome (version
GRCh38/hg38) using STAR [35] aligner. Samtools [36]
were used for data filtering and file format conversion,
while the HT-seq count algorithm [37] was used to assign
aligned reads to exons using the following command line
“htseq-counts non intersection—nonempty” Normaliza-
tion of reads and removal of unwanted variation was per-
formed with RUVseq [38]. Differentially expressed genes
were assessed using the DESeq2 R package [39] and the
significant genes were characterized by log2 fold change
cut-off of 0.5 and p-value less than 0.05. Gene ontology
and pathway analysis was accomplished using the DAVID
software [40]. Only pathways and biological processes
with p-value less than 0.05 were characterized as signifi-
cantly enriched. Heatmaps representing the significant
differentially expressed genes and the most significant
genes where SeneVick was found enriched were con-
structed with R package Shiny [41], where hierarchical
clustering was performed, with linkage method ‘average’

Gene set enrichment analysis

Gene Set Enrichment Analysis [42] (GSEA) was used in
order to determine whether SeneVick is enriched in senes-
cent samples. More specifically, the signature’s genes that
are expected to be upregulated were tested for enrichment
separately from those expected to be downregulated. Age
in years was treated as a continuous variable and Pear-
son correlation was used to determine the enrichment or
depletion of the signature’s genes across age.
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Cytotoxicity assay

Human PBMCs from healthy donors were isolated,
cultured and the senescence induction was held as
referred in section "In vitro setting”. T-cells were acti-
vated using CD3/CD28 activation beads (Biolegend,)
(1:1 cell-to-bead ratio) for 3 days. Melanoma tumor
cells (A375) were loaded onto U-bottom 96-well plates
at a density of 2x10* cells/well. Activated T-cells
were subsequently added at a 0:1 (no T-cells) 1:1,
10:1 and 25:1 T-cell: tumor cell ratio and co-cultures
were incubated for 24 h. Lymphocytes were removed
by PBS washing and viable tumor cell numbers were
determined by MTS 3-(4,5-dimethylthiazol-2-yl)-5-
(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-
tetrazolium, inner salt).

Melanoma patients

In silico datasets

Integration of databases The scRNA-seq data [43, 44]
for the melanoma cohort (Table S2) were processed as
described above in section "In silico setting", with the addi-
tional steps of a) the conversion of the counts to TPM, log
transformation and b) the use of a minimum mean house-
keeping expression threshold of log2(TPM + 1) > 2.5. After
the quality control steps, the cells were annotated using
SingleR (v2.4.1) while using as a reference, a dataset com-
prising 300.000 immune cells [45, 46]. The response sta-
tus of the melanoma patients in the in silico datasets was
assessed according to the Response Evaluation Criteria in
Solid Tumours (RECIST) [47].

The dataset was then split into broad cell types and
comparisons were made between Rs and NRs. For each
cell type, the dataset was integrated using the fastMNN
function and clustered using a clustering resolution of
0.3 and 40 principal components. Ucell [48] (v2.6.2) was
used to calculate the senescence score, for each of the
three aforementioned signatures (SeneVick, SenMayo
and Fridman), as well as the T-cell anergy and exhaustion
scores. Next, in the cases where cell type contained clus-
ters exhibiting low senescence scores, and high exhaus-
tion scores, these clusters were excluded. A Wilcoxon test
was conducted between the Rs and NRs cells, in order to
determine senescence score differences. The scRNA data
obtained from patients prior to immunotherapy admin-
istration were analyzed using the same method. Of note
the only difference was noted in the fact that there wasn't
an need for integration of the data and that in cases
where the low senescence—high exhaustion cells were
not forming a separate cluster such as in CD4+ T-cells,
we removed all the cells which had a senescence score
below the 20th percentile and simultaneously an exhaus-
tion score above the 80th percentile and used a clustering
resolution of 0.5.
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SeneVick’s cut-off determination to predict immu-
notherapy response To assess whether SeneVick could
predict the response to immunotherapy in our dataset,
we defined a per-patient, senescence index based on our
signature:

High senescence cells

. + ps
Sene Vick Index = ——otal cells
ow _senescence cells +ps
Total cells p

where ps=0.01 is a pseudocount to avoid division by
zero. The SeneVick index was calculated for each patient
with more than 10 cells per cell type (CD4* T-cells and
CD8" T-cells). To this purpose, we generated two thresh-
olds: The upper one, above which cells are considered
highly senescent, and the bottom one, below which cells
are considered marginally senescent. In order to avoid
bias in our statistical methodology and since each cell
type would be characterized by different optimal thresh-
olds, we ran an optimization analysis. In this analysis, we
tested all upper percentiles of senescence enrichment
(between 55-95) and all lower percentiles of senescence
enrichment (between 5 and 45) with a step size of 5
with the resulting patient indices for each threshold pair
evaluated via Receiver operating characteristic (ROC)
analysis. The optimal threshold pair was determined as
the one that maximized the area under the curve (AUC)
score, while retaining the vast majority of patient-derived
cells from the in silico datasets [43, 44]. The latter was
accomplished using Youden’s index [49], which allows
for the optimal discrimination of Rs and NRs. All in all,
the above methodological framework constitutes a novel
approach that is recommended to be followed for effec-
tive senescence cut-off determination in the dataset of
interest.

Cell communication analysis In order to infer the cell-
cell communication between the immune cells the Cell-
Chat R (v2.2.0) package was used [50]. Cells were grouped
based on their cell type and response status, and the mini-
mum number of cells required per group for the analysis
was set to 50. Subsequently, the differences between Rs
and NRs Ligand-Receptor pair communication probabili-
ties in CD8 + T-cells, CD4 + T-cells, NK cells and B-cells
(CD19 +/CD20 +) were identified.

Ex vivo melanoma setting

Twenty-four (24) melanoma patients that received sin-
gle or combinatorial immune checkpoint inhibitors, as
first line therapy after entering stage IV, were analyzed.
Patient and clinical characteristics are depicted in Table
S3. All patients included in this study gave their written
consent and the study was approved by the local ethical
review board (project ID: Ethikkommission Ostschweiz,
EKOS 16/079). Patient’s response was assessed using
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RECIST version 1.1 [47], approximately 3 months after
initiation of therapy and at 3-month intervals thereafter.
The Best Overall Response (BOR), defined as the best
response recorded from the start treatment initiation
until disease progression was documented. Based on
BOR, patients were categorized as responders [47] (Rs,
complete or partial response) or non-responders (NR,
stable disease or progressive disease).

Senescence assessment in PBMCs Peripheral blood
mononuclear cells (PBMCs) from the melanoma patients
were obtained following established procedures using
Ficoll as previously described [25]. PBMCs were thawed,
washed twice with PBS containing 0.5% heat-inactivated
fetal bovine serum (PAN-Biotech GmbH; staining buffer),
and resuspended in staining buffer. Cell viability and con-
centration were assessed microscopically using a hemo-
cytometer (Neubauer chamber) and Trypan blue staining
(Corning’®, NY, USA). Cells were set at a final concentra-
tion of 5 x 10°/ml and 100 pl of them were then transferred
to a 5 ml round-bottom polystyrene Flow Cytometry
Analysis (FACS) tube (BD Biosciences, NJ, USA). Cells
were labelled with BD Horizon™ Fixable Viability Stain
570 (BD Biosciences, NJ, USA) for 20 min at 4 °C in the
dark and washed twice with staining buffer, before add-
ing the master mix of 15 fluorochrome-conjugated mono-
clonal antibodies (Table S4) targeting surface antigens
(BD Biosciences, NJ, USA; Biolegend Inc., CA, USA). To
minimize non-specific binding, 10 ul of BD Pharmin-
gen™ MonoBlock™ buffer (BD Biosciences, NJ, USA) was
added together with the antibody master mix, and cells
were incubated for 30 min at 4 °C in the dark. Further,
cells were fixed and permeabilized using the BD Pharmin-
gen™ Human FoxP3 Buffer Set (BD Biosciences, NJ, USA),
following the manufacturer’s instructions, and labelled
with anti-Ki67 antibody (BD Horizon™ BV711 Mouse
Anti-Human Ki67; BD Biosciences, NJ, USA) for 30 min
at 4 °C in the dark. After washing twice with staining buf-
fer, cell pellets were resuspended in 200 ul GLF16 diluent
[95% PBS, 2.5% Tween-20 (Sigma-Aldrich®), 2.5% DMSO
(PAN-Biotech GmbH)] containing 2 ul of the GLF16 dye
(200 pg/ml) and incubated for 10 min at room tempera-
ture in the dark under mild shaking. After two washing
steps with GLF16 diluent, samples were acquired on a
Cytek Northern Lights spectral flow cytometer (Cytek®
Biosciences) for stable flow cytometer performance, daily
SpectroFlo® QC Beads (Cytek® Biosciences) were run. Data
analysis was performed with FlowJo™ v10 Software (BD
Life Sciences). The gating strategy for analysis is presented
in the supplemental material. During the aforementioned
analysis unstained controls were analyzed for all samples.

Sorting of live senescent cells applying mGLF16 Iso-
lated PBMCs from the melanoma patients (Rs and NRs)
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were acquired according to Ficoll protocol as mentioned
above. The cells were treated with 0.0166 pg/ml (Flow
Cytometry) mGLF16 for 3 h (37 °C, 5% CO,). Cells were
collected, washed, resuspended in PBS/0,5% FBS and
then they were sorted [24]. The isolation of GLF16+and
GLF16-PBMCsp for subsequent RNA-sequencing was
performed with a BD FACSMelody cell sorter (BD Biosci-
ences, NJ, USA) using the high- purity mode. A minimum
0f 100.000 GLF16+ from NRs patients and GLF16- PBMCs
from Rs patients were collected in separate tubes contain-
ing sorting buffer. Each sorted population was tested for
contamination by a post-sort acquisition, which verified
99% purity for each sample.

Senescence assessment in tissues Senescence assessment
in FFPE samples was carried out using GL13 or GLF16 seno-
probesasdescribed insections "GLF16/Immunofluoresence”
and "Immunocytochemistry-Immunohistochemistry”.

Quantification and statistical analysis

In each experiment, values are demonstrated as
means t standard deviation. Differences between groups
were estimated using the parametric 2-tailed Student’s t
test, Wilcoxon test, the non-parametric Mann Whitney
or 1-way ANOVA with Bonferroni’s post hoc test for
multiple comparisons, as appropriate. p <0.05 were con-
sidered significant. In order to compare the ages of Rs
and NRs melanoma patients, a Shapiro—Wilk normality
test was conducted to examine the normality of the dis-
tributions of the age in each group (p <0.05, not normally
distributed) and then a Wilcoxon test was held between
the ages of the two groups of patients. Statistical analy-
sis was performed using the Statistical Package for Social
Sciences (SPSS) version 13.0.0 (International business
machines-IBM).

Results

Decoding the senescence molecular signature SeneVick
We have recently generated SeneVick by incorporating
studies that assessed cellular senescence in human cells
using the senescence detecting algorithm (SDA) and
concurrently included a variety of high throughput data
(transcriptomics: RNA-seq and scRNA-seq, proteomics
and epigenomics [14], Figure S1a). The signature is com-
posed of 100 genes and exhibits an expression motif that
complies with the senescence phenotype. The majority
of them are down-regulated (n=67) (Figure S1b). Char-
acteristically, the genes included in the signature are
implicated in diverse biological processes and can be
grouped into distinct functional clusters, reflecting to a
large extent the hallmarks of the senescence phenotype
[1] (Figure S1b). The most profound cluster regards genes
encoding potent cell cycle regulators and factors involved
in the cellular response to DNA damage (Figure S1b). The
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second one consists of genes controlling chromosome
structure and stability (Figure S1b). A considerable pro-
portion of the signature encompasses genes related to the
activation of immune responses and interactions among
immune cells, while the other two clusters contain genes
involved in metabolic and other functions (Figure S1b).
Further zooming into clusters uncovered the involvement
of the genes in a variety of cellular processes (Figure Slc).
Interestingly, common genes between SeneVick and state
of the art senescence molecular signatures, namely the
SenMayo and FridMan gene sets, were identified [22, 23]
(Figure S1d).

Our senescence signature exhibits several unique and
biologically intriguing features that underline its poten-
tial functional importance. First and foremost, analysis of
the SeneVick gene set revealed that the constituent genes
do not represent simple haplotypes, suggesting that their
co-occurrence is not the result of genetic linkage or
population-based inheritance patterns. Another promi-
nent molecular feature of the SeneVick-encoded proteins
is their strong enrichment in ankyrin repeat domains.
Ankyrin repeats are highly structured motifs that medi-
ate protein—protein interactions, often serving as scaf-
folds in large signaling complexes [51]. Their consistent
appearance across nearly all proteins encoded by the Sen-
eVick genes suggests a non-random, biologically mean-
ingful pattern, potentially orchestrating the senescence
phenotype. Indeed, ankyrin repeat-containing proteins
have been implicated in the regulation of cellular integ-
rity, cell-cycle arrest, stress signal transduction, and dif-
ferentiation processes, all of which have been linked with
cellular senescence [51]. In addition to structural motifs,
the genomic architecture of the SeneVick genes revealed
another layer of functional organization: a statistically
significant enrichment in T-dimeric motifs within their
genomic sequences, exhibiting a periodic distribution.
Given that periodic nucleotide motifs have been associ-
ated with the dynamic modulation of gene expression,
this feature raises the possibility of a regulatory role dur-
ing senescence [52]. Lastly, when mapping the SeneVick
genes on chromosomes, we identified their absence in
chromosomes 14, 18 and 21 and their underrepresenta-
tion in chromosome 13 (Figure S1b). Interestingly, these
chromosomes are associated with trisomy syndromes—
Patau (trisomy 13), Edwards (trisomy 18), and Down
syndrome (trisomy 21) or lethality (trisomy 14), entities
characterized by premature aging, chronic inflammation
and senescence phenotypes [53-55]. It could be hypoth-
esized that the absence or underrepresentation of SeneV-
ick genes at these chromosomes may imply a protective
genomic architecture, where senescence regulators are
compartmentalized away from the chromosomal loci
whose abnormal dosage leads to accelerated aging syn-
dromes or premature death.

Page 9 of 27

SeneVick effectively identifies senescence irrespective of
tissue origin, senescence type or species

The SeneVick signature emerged by exploiting data from
human cells of different tissue origin and proved efficient
in demarcating non-senescence from senescence and
in discriminating cellular senescence from aging in the
liver [14]. We subsequently focused on testing its appli-
cability and validating its fidelity in detecting senescence
across tissues in other species besides humans. To eluci-
date this, we initially applied SeneVick in a publicly avail-
able single-cell transcriptomic atlas that was extracted
across the lifespan of Mus musculus [19]. This dataset
comprised scRNA-seq data obtained from 20 tissues and
organs of mice split into six age groups, that ranged from
1 month which is equivalent of human early childhood
to 30 months (equivalent to a human centenarian) [19].
Given that single cell analyses allow for the determination
of gene expression in specific cell populations, they can
facilitate uncovering certain cellular processes, such as
cellular senescence, that might have been overlooked or
hidden upon bulk RNA analyses. As demonstrated in Fig-
ure S2a, SeneVick was found significantly enriched in a
variety of cell types and most profoundly in cardiac fibro-
blasts, keratinocytes and skeletal muscle cells of old mice
(18 months and beyond, Wilcoxon, p <0.05), reaching the
highest values in older mice (Figure S2b). These results
are in line with other studies in the same tissues support-
ing a linear increase of the proportion of cells expressing
senescence markers with age progression [19]. The lat-
ter was further confirmed in an in vitro human setting
consisting of primary skin fibroblasts obtained from 7-,
35-, and 75-year-old individuals, capturing time-points of
the aging process. In contrast to young cells, those from
75 year old donors were found to exert replicative senes-
cence (a senescence type induced by telomere shorten-
ing) [1] that was verified applying the SDA along with
telomere length analyses (Fig. 1a, 1b,1c, 1d, 1e). To cross-
check this finding, we isolated RNA from these cells and
implemented SeneVick in RNAseq data extracted from
these fibroblasts and identified a progressive enrichment
of the signature upon replicative senescence and age
(Fig. 1f). Particularly, GSEA analysis resulted in a positive
Normalized Enrichment Score (NES) of 1.76 (p<0.002)
for genes whose expression increases with age and a neg-
ative NES of —-3.18 (p<0.001) for those that are downreg-
ulated as age progresses (Fig. 1f). Overall, these findings
highlight the potency of the extracted signature in detect-
ing senescence, irrespective of tissue origin and spe-
cies. To further validate SeneVick, we compared it with
two state of the art senescence signatures, namely Sen-
Mayo and Fridman [22, 23]. Both signatures have been
extracted from human data with the SenMayo gene set
consisting predominantly of SASP factors, while the key
genes represented in the Fridman signature are involved
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Primary skin fibroblasts extraction and culture
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Fig. 1 (See legend on next page.)
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(See figure on previous page.)

Fig. 1 Validation of SeneVick in a human replicative senescence (aging) model. a. Schematic illustration of the primary skin fibroblasts extraction and
culture. b Upper panel: Senescence assessment in human primary fibroblasts from different age groups (Age: 7-, 35-,and 75 years) using the senescence
detecting algorithm (SDA). Representative images of double staining of cells with the senescence markers GLF16 (red) and p21"AF/“"" (green) and DAPI
counterstain. The images were quantified using ImageJ (n=3 biological replicates). Objective: 20x. Scale bar: 30 um. Lower panel: Evaluation of prolifera-
tion in human primary fibroblasts from different age groups (Age: 7-, 35-. and 75-years). Representative images of Ki67 immunocytochemical staining
(upper panel). Positive cells were calculated by evaluating the strong brown nuclear signal for Ki67. c. Graphs depict the percentage of positive cells (%)
for GLF16 (right side), p21."A"“PT (middle side) and Ki67 (right side). Approximately 100 cells per optical field were counted, and > 5 high-power fields
per sample were used for the quantification. Statistical analysis was performed employing Wilcoxon nonparametric test. The data obtained represent
means + standard deviation. P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. Objective 20X, 40x. Scale bars: 30 um and 60 um respectively. d. Telomere
length curve depicting telomere attrition during aging in human primary fibroblasts. e. Microscopy images from PNA-FISH using DAPI with a telomere-
specific probe (right) depicting telomere attrition on metaphase chromosomes from the three age groups. Objectives 63x. f. Human fibroblast gene
expression after VST-transformation and z-scaling, (left panel=upregulated genes, right panel=downregulated genes). The upregulated genes show
progressive increase, whereas the downregulated genes show progressive decline. This result is in concordance with the result of the GSEA analysis. The
corresponding heatmap depicts duplicates for each age group. Two data sets were compared with unpaired t-tests, *P<0.05, **P<0.01, ***P<0.001,
***¥P<0.0001. "Donor icons were provided by Servier Medical Art (https://smart.serviercom/), licensed under CC BY 4.0 (https://creativecommons.org/

licenses/by/4.0/)"

in six particular pathways: pRB/p53, cytoskeletal forma-
tion, interferon-related, insulin like growth factor-related,
mitogen-activated protein kinase (MAPK) and oxidative
stress. We implemented these three senescence signa-
tures in a publicly available human sc-RNAseq dataset
[20] (GSE226225) obtained from human fibroblasts that
were analyzed in two different settings. First, sc-RNAseq
data were extracted from a time course experiment by
monitoring cells for 10 days following treatment with the
chemotherapeutic drug Etoposide (ETO) (Fig. 2a). We
repeated this experiment staining cells according to the
SDA in three different timepoints [3] (Day 0, 4, 10). Both
approaches revealed absence of SeneVick enrichment
and lack of senescence markers in day 0 and a progres-
sive increase in the following days, reaching the highest
values at day 10 (Fig. 2b, Fig. 2c, Figure S3a). The in silico
dataset was used to compare SeneVick with the other
two signatures, taking into account the distribution of
the enrichment scores [48] and using segmented linear
regression analysis that allows the capturing of two dif-
ferent rates of increase. While the breakpoint was identi-
fied on or near day 1 in all signatures, the slope from day
0 to day 1 when applying SeneVick was higher (0.14) than
the respective SenMayo (0.013) and Fridman (0.06) ones
(p<0.05, Figure S3b). Given that SeneVick was not found
enriched in non-senescent (control) cells (day 0), this
finding implies a larger difference of SeneVick enrich-
ment between non-senescence and senescence (day 1 and
beyond, Figure S3b). Similar observations emerged from
the second setting where the signatures were applied in
sc-RNAseq data of fibroblasts exerting different types
of cellular senescence (irradiation-induced and ETO-
induced). As shown in Figure S3c, enrichment of the
SenMayo and Fridman signatures was also evident in the
control (non-senescent) state while SeneVick was absent.
Altogether, SeneVick is more specific and efficient com-
pared to the other signatures in demarcating senescent
cells from non-senescent ones, even when senescence is

low providing thus a valuable tool to uncover senescence
that might be encrypted or overlooked.

Immune cell senescence drives response to
immunotherapy in melanoma patients
Next, we tested whether immune cell senescence con-
tributes to dysfunction of the immune cell compartment
within the TME, affecting the outcome of immuno-
therapy. Particularly, we conducted a case control study,
implementing two senescence detecting approaches that
complement each other. First, SeneVick was retrospec-
tively applied in a scRNA-seq dataset from melanoma
patients that received immunotherapy [43, 44] and sec-
ondly, we performed the SDA in clinical material from
an analogous melanoma cohort (Tables S2 and S3). We
focused on melanoma based on the fact that immuno-
therapy is a first-line therapy in this type of malignancy,
while in other types of cancer it is usually implemented in
combination with chemotherapy or radiotherapy.
Regarding the first approach we took advantage of the
only two identified in the literature studies containing
single cell data from melanoma patients following immu-
notherapy, particularly PD1, CTLA4 or combined inhibi-
tion and concurrently demonstrating the response status
of these patients [43, 44] (Table S2). Thus, data regarding
gene expression per cell type in Rs and NRs were acces-
sible. In some cases, data obtained prior to treatment
were also available (Table S2). As an initial step, we fol-
lowed a detailed bioinformatic pipeline to integrate the
two datasets as depicted in Figure S4, which included
several steps of data processing, cell annotation and nor-
malization. This process resulted in a cohort of a total
of 48 melanoma patients comprising 30 NRs and 18 Rs.
In this setting, we found distinct clusters of the immune
cell compartment comprising mainly CD4+ T-cells,
CD8 + T-cells, NK and B-cells (CD19+/CD20+). Dur-
ing the ensuing stages, we implemented SeneVick in
the latter dataset and investigated the senescence status
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Fig. 2 Validation of SeneVick in a human therapy-induced senescence model. a Left panel: Schema depicting the experimental procedure followed in
day 0 to establish etoposide-induced cellular senescence in human fibroblasts. Middle panel: UMAP plot of human fibroblast scRNA data (GSE226225)
displaying their clustering upon time (days), following etoposide treatment. Right panel: Senescence assessment in human WI-38 fibroblasts in day 0
using the senescence detecting algorithm (SDA). Representative images of double staining of cells with the senescence markers GLF16 (red) and p16™N<A
(green) and DAPI counterstain. The images were quantified using ImageJ (n=3 biological replicates). Objective: 20x. Scale bar: 30 um. Images of Ki67
immunocytochemical staining (middle side). Positive cells were calculated by evaluating the strong brown nuclear signal for Ki67. Graphs (right side)
depict the percentage of positive cells (%) for GLF16, p16N* and Ki67. Approximately 100 cells per optical field were counted, and = 5 high-power fields
per sample were used for the quantification. Statistical analysis was performed employing Wilcoxon nonparametric test. The data obtained represent
means+ standard deviation. P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. Objective 20x, 40x. Scale bars: 30 um and 60 pum respectively. b. Left panel:
Schema depicting the experimental procedure followed in day 4 to establish etoposide-induced cellular senescence in human fibroblasts. Middle panel:
UMAP plot of human fibroblast scRNA data (GSE226225) displaying their clustering upon time (days), following etoposide treatment. Right panel: Senes-
cence assessment in human WI-38 fibroblasts in day 4 using the senescence detecting algorithm (SDA). Representative images of double staining of cells
with the senescence markers GLF16 (red) and p1 EINKaA (green) and DAPI counterstain. Images of Ki67 immunocytochemical staining (middle side). Graphs
(right side) depict the percentage of positive cells (%) for GLF16, p16™** and Ki67. The quantification of the images, the evaluation of the proliferation
and the statistical analysis were accomplished as mentioned above (a). Lower panel: Schema depicting the culturing conditions to establish etoposide-
induced cellular senescence in human fibroblasts across the 10 days of the experiment. c. Left panel: Schema depicting the experimental procedure
followed in day 10 to establish etoposide-induced cellular senescence in human fibroblasts. Middle panel: UMAP plot of human fibroblast scRNA data
(GSE226225) displaying their clustering upon time (days), following etoposide treatment. Right panel: Senescence assessment in human WI-38 fibroblasts
in day 10 using the senescence detecting algorithm (SDA). Representative images of double staining of cells with the senescence markers GLF16 (red)
and p16/N@A (green) and DAPI counterstain. Images of Ki67 immunocytochemical staining (middle side). Graphs (right side) depict the percentage of
positive cells (%) for GLF16, p16.N*A and Ki67. The quantification of the images, the evaluation of the proliferation and the statistical analysis were ac-
complished as mentioned above (a). "Fibroblast cells icons were provided by Servier Medical Art (https://smart.servier.com/), licensed under CCBY 4.0 (h
ttps://creativecommons.org/licenses/by/4.0/)"

in each immune cell population and in relation to the
response outcome. As demonstrated in Fig. 3, SeneVick
enrichment was evident in CD4 + T-cells, CD8 + T-cells,
NK and B-cells (CD19+/CD20+) and in relation to the
response status we found that cells belonging to NR
patients exhibited higher enrichment scores compared to

responding patients. This phenomenon was independent
of patients' age (p=0.12) and other confounding factors
such as age, sex, melanoma type and stage (Table S3).
Next, we questioned whether we could assess an enrich-
ment threshold value for SeneVick that can discrimi-
nate Rs from NRs and predict treatment outcome in our
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Fig. 3 SeneVickimplementation in an in silico melanoma dataset reveals increased senescent immune cell populations in NRs compared to Rs to immu-
notherapy. UMAP plot displaying the distribution of the cells from the single-cell RNA sequencing data of the 48 Rs and NRs melanoma patients following
immunotherapy, from the GSE115978 (n=30) and GSE120575 (n=18) datasets. The cells are categorized based on SeneVick enrichment (middle panel).
Violin plots show significant SeneVick enrichment in CD4 +and CD8+T-cells, NK and B-cells (CD19+/CD20+) of NRs versus Rs (peripheral panels). To
visualize the senescence scores, the scores of the cells below the 10th percentile and the ones above the 90th percentile were clipped, in order to reduce
the influence of the outliers on the color scale. Nominal p-values were calculated via Wilcoxon test: CD8+T-cells (P < 6.4e-08), CD4 +T-cells (P< 3.4e-06),
B-cells (CD19+/CD20+) (P< 3.6e-08) and NK cells (P<0.016). *P < 0.05, **P< 0.01, ***P<0.001, ****P < 0.0001

dataset. As explained in section "SeneVick's cut-off deter-
mination to predict immunotherapy response", we tested
81 upper and lower threshold combinations per cell type,
in order to find the threshold pair which allows for the
optimal discrimination of Rs and NRs. Specifically, in
CD8 + T-cells, an upper threshold of 55 and a lower
threshold of 30 yielded an AUC=0.75 with an optimal
index cutoff of 1.45. In CD4 + T-cells, an upper threshold
of 75 and a lower threshold of 30 gave an AUC=0.73 with
an index cutoff of 0.82. NK and B-cells (CD19+/CD20+)
were excluded due to low cell numbers (less than 10)
and excessive patient loss. SeneVick's observed predic-
tive performance reflects the contribution of senescence
to immunotherapy resistance, in line with its established
role as a key determinant of treatment outcome. Col-
lectively, these findings substantiate the predictive value
of the SeneVick signature in melanoma immunotherapy
response (Fig. 4).

The second approach included analysis of ex vivo clini-
cal material from melanoma patients that received single
or combined immunotherapy, as monotherapy (Table
S3). Particularly, PBMCs from Rs and NRs patients were
obtained and senescence was assessed via flow cytome-
try, using the GLF16 senoprobe, an essential component
of the SDA [3-5]. This approach was favored as circulat-
ing immune cells have been demonstrated to reflect to

a large extent the tumor infiltrating ones and provide a
reliable snapshot of the TME [56]. As expected, PBMCs
originating from NR patients exhibited significantly
higher senescence particularly in the CD4+and CD8+ T-,
and B-cell (CD19+/CD20+) subtypes compared to Rs
(Fig. 5, Figures S5-S6). This was also the case for NK
cells, though the lack of statistical significance was prob-
ably due to the low number of ex vivo samples. Increased
senescence in CD4+and CD8+ T-, and B-cells (CD19+/
CD20+) of NRs was subsequently confirmed in corre-
sponding tissue biopsies from these patients using the
SDA, additionally suggesting that NRs exert consider-
ably increased immune cell senescence, in relation to
Rs (Fig. 5, Figure S7). No association of immune senes-
cence in NRs with clinical features presented in Table
S3 was identified. Overall, the observations from the in
silico and experimental analysis robustly support that
NRs to immunotherapy can be distinguished from Rs
based on their immune cell senescence status, irrespec-
tive of their age. Subsequently, RNA isolated from sorted
GLF16+ (senescent) PBMCs of NR melanoma samples
was enriched for SeneVick further strengthening the
above findings (Fig. 6).

To exclude the possibility that immune checkpoint
inhibition could be responsible for senescence observed
in the immune cell populations, we implemented
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SeneVick exclusively in single cell data from melanomas
before their treatment. We confirmed that NRs exerted a
significantly increased senescence score in CD4+ T-cells
(P=6.1*10"°), CD8+ T-cells (P=6.5*10") and NK cells
(P=0.011) compared to Rs, prior immunotherapy (Fig. 7).
In B-cells (CD19+/CD20+) the difference was not statis-
tically significant, most probably due to the small number
of cells of these populations when only the pre-treatment
samples are considered.

Interestingly, within the CD4+and CD8+ T-cell sub-
sets of NRs, a relatively small population of cells that
was neither enriched for SeneVick nor proliferating drew
our attention. Further zooming into this observation,
we questioned whether these cells could be exhausted
or anergic, as these T-cell states have been previously
reported as a source of immune cell dysfunction [57].
In order to examine this issue, we extracted two signa-
tures consisting of the most potent markers identified in
the context of exhaustion and anergy respectively (Table
S5) and applied them in the CD4+and CD8+ T-cell

compartment of our melanoma cohort. Indeed, cell pop-
ulations negative for senescence, anergy and proliferation
exerted an increased enrichment of the "exhaustion" sig-
nature while those showing SeneVick enrichment were
simultaneously negative for exhaustion, anergy and pro-
liferation (Fig. 8). These observations highlight the fidel-
ity of SeneVick in distinguishing cellular senescence from
other dysfunctional cell states within the immune cell
compartment, thus allowing the elucidation of its role
not only in cancer but also in a variety of other diseases.
Lastly, in order to gain further insights into the altera-
tions that senescence may impose in the TME of NRs,
we analyzed the intercellular interplay of the immune
cell subpopulations in Rs versus NRs. Particularly, in the
formerly analyzed melanoma scRNA dataset of Rs and
NRs patients we applied a cell communication analysis
using CellChat [50]. The results showed numerous dif-
ferences of ligand-receptor communication probabilities
among the immune cell types previously encountered
(CD8+and CD4+ T-cells, NK cells, and B-cells (CD19+/
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Fig. 5 Senescence assessment in an ex vivo melanoma cohort, consisting of peripheral blood and tissues, demonstrates increased immune cell senes-
cence in NRs compared to Rs to immunotherapy. a. Schematic overview of the experimental procedure followed to collect peripheral blood samples
and tumor lesions from melanoma patients. Blood samples were processed with Ficoll-Paque density gradient centrifugation to isolate PBMCs. The latter
were stained with a panel of fluorochrome-conjugated antibodies (Table S4) GLF16 and further analyzed with flow cytometry to assess GLF16+ (senes-
cent) immune cell populations. In turn, tissue samples were double stained with GLF16 and immune cell markers to assess immune cell senescence. b.
Representative UMAP plot showing the clusters of the major PBMC subsets, i.e., CD4+T cells, CD8+T cells, B-cells (CD19+/CD20+), NK cells, NKT cells, and
monocytes. Color coding reflects event density (blue, low; red, high). c. Violin plots display the percentages of GLF16+ (senescent) CD4+and CD8+T-
cells and B-cells (CD19+/CD20+), of responders and non-responders, *P < 0.05. d Representative images of double staining of cells with the senescence
marker GLF16 (red) and CD4 (green), CD8 (green) and CD20 (green). DAPI counterstain. Scale bar: 30 um. The images were quantified using ImageJ. e.
Quantification of images presented in d. Statistical analysis was performed employing unpaired t-test. The data obtained represent means + standard
deviation. P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. Objective 20X, Scale bar: 30 um. "Melanoma biopsy, human and vessel icons were provided by
Servier Medical Art (https://smart.servier.com/), licensed under CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/":

CD20+) (Fig. 9a). Further exploiting these data, we favor an immunosuppressive environment and are active
identified cell-to-cell interactions that promote effec- in NRs and inactive in Rs (Fig. 9b, Figure S8). The main
tive immune responses and are intact in Rs and dys- events promoting effective immune responses in Rs
functional in NRs as well as immune cell interplays that include: active antigen presentation [58, 59], NK cells
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Fig. 6 SeneVick's utility in identifying immune cell senescence that drives immunotherapy outcome in Rs and NRs melanoma patients. a. Schematic
overview of the experimental procedure followed to collect peripheral blood samples from Rs and NRs melanoma patients. These blood samples were
processed with Ficoll-Paque density gradient centrifugation to isolate PBMCs. b. The PBMCs of Rs and NRs melanoma patients were divided into two
groups that were cultured and stained with mGLF16 according to the SDA. c. RNA extraction from sorted GLF16+ (senescent) PBMCs of our NR mela-
noma patients. d. SeneVick implementation in these RNA datasets showing a clear enrichment of the signature and additionally signifying the senescent

nature of these immune cells in NRs

penetration through the vasculature enhancing their
cytotoxic effects [60] and increased cytotoxicity through
activation of various immune cell populations [61]. On
the other hand, among the mechanisms involved in
immunodeficiency in NRs are: increased cyclic adenos-
ine monophosphate (cAMP) production that leads to
B-cell suppression and Treg recruitment [62], increased
Treg accumulation resulting in blockage of cytotoxic
responses [63], increased attraction of M2 tumor-asso-
ciated macrophages inducing T-cell inhibition [64, 65]
and impairment of NK circulation and extravasation
driving defective NK cytotoxic effects [66] (Figure S8).
Notably, deregulated expression of the ligand-receptor
interactions presented in Figure S8 has been reported
in the context of non-immune senescence cell types [1,
67-69]. In line with the above, we demonstrated that
senescent T-cells display impaired cytotoxic activity in
relation to their non-senescent counterparts (Fig. 10). To
the best of our knowledge this is the first time shown that
senescent T-cells exhibit dysfunctional properties and
drive defective immune responses. All the above and the
fact that among the immune cell dysfunctional states the
population of senescent cells was the most prevalent one
in the scRNA NR subset (Fig. 8), support immune cell
senescence as an important determinant for responsive-
ness to immunotherapy.

Discussion

Immunotherapy has undoubtedly provided major bene-
fits towards cancer treatment in the last decades, though
in a significant portion of patients the treatment yields
limited or even no responses [17]. Cancer-related immu-
nodeficiency has arisen as an important determinant of
this outcome [70-72]. The latter has been linked to the
accumulation of dysfunctional immune cell popula-
tions within the TME, such as exhausted and anergic
ones while the contribution of cellular senescence is still
poorly understood [73-76]. In the context of immunity,
senescence has often been inaccurately assessed due to
the application of debatable and non-specific markers
[5]. As a consequence, the term immune cell senescence
has been misused, its contribution to shaping the TME is
still vague and probably underestimated, and its associa-
tion with the clinical course remains largely unknown [5].
In line with this notion, given that the senescence phe-
notype is complex and highly heterogeneous, the devel-
opment of new approaches to assess it more accurately

complementing existing or evolving tools, will enhance
our understanding on the cellular and molecular mech-
anisms involved, and its impact on human diseases and
clinical outcomes [13, 77].

The current study investigated whether cellular senes-
cence is a source of immune cell dysfunction and is
involved in the response to immunotherapy by applying
two approaches that complement each other, an in silico
one as well as a guideline senescence detecting pipeline
(SDA), in melanoma patients. Melanoma was selected, as
this type of malignancy is commonly treated with immu-
notherapy as a first option, especially in advanced stages.
Moreover, this type of treatment, as shown (Fig. 7) is not
linked to therapy-induced senescence in the immune
cell compartment, in contrast to what is observed in tra-
ditional ones (irradiation or chemotherapy) that cause
DNA damage-induced senescence and thus did not
influence our observations [78, 79]. Regarding the first
approach, we initially extensively validated SeneVick, a
senescence molecular signature comprising 100 genes
that we recently extracted, allowing the discrimination of
senescence from aging in the liver [14] (Figure S1). The
signature turned out to be highly sensitive and specific in
discriminating non-senescent cells from senescent ones,
irrespective of senescence type, tissue origin or species,
even upon low senescence levels (Figs. 1- 2, Figures
S3-54). Of note, SeneVick is not a stochastic gene set, but
rather a highly structured and evolutionarily curated net-
work of genes likely acting in coordination to mediate key
aspects of cellular senescence (Figure S1). The combina-
tion of rare protein domains, motif periodicity, and chro-
mosomal distribution patterns not only provides insights
into the mechanistic underpinnings of senescence but
also hints at the potential translational value of SeneVick
in biomarker development, aging research, and therapeu-
tic interventions targeting age-related pathologies.

We next exploited this specific and potent senescence
detecting tool, as the first approach, to address the
main query of our investigation related to the potential
involvement of tumor-related immune cell senescence
in the outcome of immunotherapy. By implementing
SeneVick retrospectively in a scRNA dataset from 48
melanomas treated exclusively with immune check-
point inhibitors (PD1, CTLA4 or combined inhibition),
we observed a considerable signature enrichment in the
immune cell populations of NRs, comprising CD4+and
CD8+ T-cells, NK and B-cells (CD19+/CD20+), that was
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Fig. 7 SeneVick identified significantly increased senescence in immune cell populations in NRs vs Rs prior treatment. UMAP plot displaying the distribu-
tion of the cells from the single-cell RNA sequencing data of the Rs and NRs melanoma patients prior to immunotherapy treatment, from the GSE115978
and GSE120575 datasets. The cells are categorized based on SeneVick enrichment (middle panel). Violin plots show significant SeneVick enrichment in
CD4+and CD8+T-cells, and NK cells of NRs versus Rs (peripheral panels). To visualize the senescence scores, the scores of the cells below the 20th per-
centile and the ones above the 80th percentile were clipped, in order to reduce the influence of the outliers on the color scale. Nominal p-values were
calculated via Wilcoxon test.: CD8+T-cells (P=0.00065), CD4+T-cells (P=6.1e-5) and NK cells (P=0.011). *P<0.05, **P<0.01, ***P < 0.001, ****P <0.0001
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independent of patient’s age and other clinical features  highlighting the predictive value of SeneVick in mela-
(Fig. 3). Furthermore, a workflow to determine an opti- noma immunotherapy response (Fig. 4).

mal cutoff value for discriminating between respond- Subsequently, as the second approach, we verified the
ers and non-responders was designed and applied, presence of senescent immune populations in peripheral



Pantelis et al. Molecular Cancer (2025) 24:308

0.15

0.10

a. T-Cell Senescence I

CD4 T-cells

NS: Negative Senescence

CDS8 T-cells

PE: Positive Exhaustion

Page 19 of 27

0.15

b. T-Cell Exhaustion I
0.10

0.15

0.10

¢. T-Cell Anergy I

NA: Negative Anergy

Fig. 8 SeneVick effectively discriminates Senescence from Exhaustion and Anergy in the melanoma TME. UMAP plot displaying the distribution of the
cells from the single-cell RNA sequencing data of the CD4+and CD8+T-cells of the 48 Rs and NRs melanoma patients and categorizing cells after (a) the
implementation of SeneVick (b) the T-Cell exhaustion signature and (c) the T-Cell anergy signature. As outlined, a subset of non-proliferating CD4+and
CD8+T-cells in NRs exerts absence of enrichment of SeneVick and the T-cell anergy signature while exhibiting a T-cell exhaustion phenotype. To visualize
the signature scores, the scores of the cells below the 10th percentile and the ones above the 90th percentile were clipped, in order to reduce the influ-

ence of the outliers on the color scale

blood mononuclear cells (PBMCs) from 11 Rs and 13
NRs melanoma patients following the SDA via flow
cytometry [3—5] (Table S4). Indeed, PBMCs originating
from NR patients, particularly CD8+and CD4+ T-cells,
and B-cells (CD19+/CD20+) exhibited remarkably higher
senescence compared to those from Rs (Fig. 5). This was
also the case for NK cells, though the differences were
not statistically significant, putatively due to the low
number of ex vivo samples available. Interestingly, higher
senescence levels were confirmed in these immune cell
types within the corresponding tumour lesions of the NR
patients compared to Rs (Fig. 5). These observations were
also in line with those that emerged following SeneVick
implementation in the in silico dataset. Of note, although
senescent populations identified in the peripheral blood
were quantitatively lower, they reflected qualitatively
those in the TME in each case and overall, confirming the
value of circulating immune cells as a reliable setting to
assess cellular senescence in patients [80, 81] (Fig. 5, Fig-
ure S7). Additionally, when applying SeneVick in sorted
senescent PBMCs from NR melanoma patients, a clear
enrichment of the signature was observed (Fig. 6). At this
point it should be mentioned that SenMayo and Frid-
man exhibit drawbacks that restrain their applicability

for senescence related studies [15]. SenMayo is heavily
composed of SASP-related transcripts, many of which
participate in various other cellular processes such as
inflammatory, stress, or immune activation responses,
leading to cross-reactivity and false-positive enrichment.
Importantly, senescence regulators such as CDKN2A
and CDKN1A are absent, limiting its diagnostic depth.
Conversely, the Fridman signature was derived from lit-
erature-based meta-analysis rather than high-throughput
omics data, and many of the original reference studies
relied on indirect or non-specific senescence markers,
including oxidative stress genes and cell cycle regula-
tors, whose interpretation is now considered insufficient
to define true senescence [3, 22, 23]. As a result, when
applied to non-senescent control datasets, both Sen-
Mayo and Fridman showed spurious enrichment in
the absence of senescence, whereas SeneVick correctly
remained uninduced (Figure S3). This phenomenon
likely reflects inflated type I error and "artificial enrich-
ment," where broadly inflammatory or stress-responsive
genes overlap with unrelated biological noise. In contrast,
SeneVick, developed directly from datasets validated
with the guideline SDA and the GLF16 fluorophore,
integrates multi-omics data (transcriptomic, proteomic,
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inducing T-cell inhibition [64, 65] and impairment of NK circulation and extravasation driving defective NK cytotoxic effects [66]. . Schematic illustration
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epigenomic) anchored on experimentally verified senes-
cent states [3, 14, 24]. This design ensures alignment
between in silico and in vitro senescence detection, yield-
ing high specificity and biological interpretability, over-
all signifying the superiority of SeneVick for senescence
related studies.

Our findings underscore the importance of immune
cell senescence in driving responsiveness to immunother-
apy in melanoma and demonstrate that the tools imple-
mented herein in a complementary manner are highly
efficient to identify those patients who are likely not to
respond according to their senescence status. While indi-
cations in experimental models support that tumor cell
senescence might influence the outcome of immunother-
apy, our study unveils for the first time the role of immune
cell senescence within the TME in responsiveness to
such an intervention in melanoma [82]. Interestingly,
the in silico analysis identified a subset of non-prolifer-
ating CD4+and CD8+ T-cells among NRs where SeneV-
ick signature was not enriched (Fig. 8). These cells were
found to exhibit a T-cell exhaustion signature and were
devoid of anergy markers. In line with this notion, NR
patients of the clinical melanoma cohort with the low-
est senescence (GLF16) indices exerted characteristically
the highest exhaustion levels. These findings denote the
reliability of SeneVick and GLF16 staining in discerning
cellular senescence from other dysfunctional T-cell states

within the TME, a task that so far has been really chal-
lenging in phenotypic analyses due to significant overlap-
ping of the applied markers [5, 24]. Moreover, numerous
differences of intercellular communication among the
immune cell populations (CD8+and CD4+ T-cells, NK
cells and B-cells (CD19+/CD20+) between Rs and NRs,
were identified (Fig. 9a, Figure S8). Overall, cell-to-cell
interactions mediating effective immune responses were
intact in Rs and dysfunctional in NRs while the interac-
tions favoring an immunosuppressive context were found
activated in NRs and inactive in Rs (Fig. 9b, Figure S8).
Interestingly, their deregulation has been also identified
in non-immune senescent cells [1, 68, 69]. In line with
these findings, we also showed that senescent T-cells are
incapable of eliminating tumor cells in relation to their
non-senescent counterparts, associating directly T-cell
senescence with impaired cytotoxicity (Fig. 10). Given
that among the dysfunctional immune cell populations
in the NRs the senescent one was the most prevalent
(Fig. 8), underscores the role of senescence-mediated
immune suppression in imposing resistance to immu-
notherapy (Fig. 9b). The latter is characterized by senes-
cence in CD8+ T-cells, and NK cells leading to loss of
their cytotoxic activity, while senescence in CD4+ T-cells
that exert a multifaceted role in cancer immunity, leads
to a diminished pool of functional T-cells incapable
of responding to new antigens [83-85]. Senescent cell
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Fig. 10 Ineffective immune responses of senescent T cells against melanoma cells. a Schematic overview of the experimental procedure followed to
collect peripheral blood samples from a young donor (left panel) and their co-culture with A375 melanoma cells. This blood sample was processed with
Ficoll-Paque density gradient centrifugation to isolate PBMCs. In the following steps, the PBMCs were stratified into two subgroups, with the second one
being subjected to oxidative stress-induced cellular senescence. The two subgroups were co-cultured with A375 melanoma tumor cells (right panel) in
order to evaluate their cytotoxic abilities. b The two aforementioned groups of PBMCs were stained with GLF16 according to the SDA and CD3. Repre-
sentative images of double staining of cells with the senescence marker GLF16 (red) and CD3 (green), DAPI counterstain. Scale bar: 30 um. The images
were quantified using ImageJ (n=3 biological replicates). c. Graphs (right side) depict the percentage of positive cells (%) for GLF16. Approximately 100
cells per optical field were counted, and > 5 high-power fields per sample were used for the quantification. Statistical analysis was performed employing
Wilcoxon nonparametric test. The data obtained represent means + standard deviation. P<0.05, **P <0.01, ***P<0.001, ****P <0.0001. d T-cell cytotoxic-
ity assays from the corresponding co-cultures of ROS-induced senescent T-cells and untreated T-cells. "Cell icons and blood samples were provided by
Servier Medical Art (https://smart.servier.com/), licensed under CC BY 4.0"
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populations, particularly CD8+and CD4+ T-cells, can
secrete a variety of SASP factors (pro-inflammatory
cytokines, chemokines and growth factors), that can
remodel the immune landscape and influence the TME
towards tumour progression [86—88]. In this context,
tumour infiltrating senescent T lymphocytes can affect
B-cell (CD19+/CD20+) activation and their subsequent
differentiation into CD27+/CD38+ cells, ultimately lead-
ing to a deficiency in antibody production and inefficient
adaptive responses [86—88]. The latter is also a potential
outcome of B-cell (CD19+/CD20+) senescence as identi-
fied in our analysis in NRs. Regarding the limitations, our
investigation should be regarded as a starting point aim-
ing to unveil the role of immune cell senescence within
the TME and its involvement in immunotherapy out-
come. As such, it needs to be expanded not only in mela-
noma but also in a wide spectrum of other malignancies
and irrespective of whether Immune Checkpoint Inhibi-
tion (ICI) is the first-line treatment or follows conven-
tional ones that can trigger senescence [17, 89, 90].

While there seems to be a relation between aging and
immune senescence [88], our findings suggest that cancer
cells can shape a microenvironment to promote immune
cell senescence as a strategy for immune evasion, inde-
pendent of patients' age, addressing thus a debatable
matter. Potential mechanisms involved are summarized
in Figure S9. Nevertheless, these mechanisms should be
regarded cautiously, as markers applied for senescence
identification in these studies can also be evident in other
immune cell dysfunctional states [5].

Given the plasticity of immune cells and that anergy or
exhaustion reflect in principle progressive and irrevers-
ible states acquired upon chronic infections or cancer,
immune cell senescence emerges as an attractive option
to rejuvenate the immune system in order to restore its
functionality, increasing thus the efficacy of immuno-
therapy. In fact, strategies for immune cell reinvigoration
that target the above molecular mechanisms and path-
ways as well as the elimination of the toxic and immuno-
suppressive senescent cell compartment in the TME are
gaining increased attention [5, 91]. Regarding the latter,
a recently reported innovative senolytic platform that
allows for selective removal of senescent cells without
side effects paves the way [92]. This advancement under-
scores the importance of investigations such as the cur-
rent one that exploits efficient senescence detecting tools
to characterize patients according to their senescence
status which drives their responsiveness to therapy.

Conclusion

Immunotherapy has significantly improved cancer treat-
ment. However, not all cancer patients benefit from
such interventions, rendering the elucidation of differ-
ences between responders and non-responders at the
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molecular/cellular level an imperative task. Dysfunc-
tional immune cell states such as T-cell exhaustion and
anergy have been linked to failure of checkpoint inhibi-
tors, while the role of immune cell senescence remains
elusive. In the current study, we investigated this issue
in melanomas where immunotherapy is applied as a
first line treatment, following two senescence detecting
complementary approaches. We found for the first time
that melanoma patients who did not respond to immu-
notherapy exerted increased cellular senescence in their
CD8+ T-cells, CD4+ T-cells, B-cells (CD19+/CD20+) and
NK cells compared to responders. High senescence levels
in non-responders were independent of patients' age and
not an outcome of immunotherapy, in contrast to con-
ventional anti-cancer treatments. Overall, our findings
support cellular senescence of immune cells within the
tumor microenvironment, as a potent determinant of the
response to immunotherapy.

Abbreviations

SA-B-Gal Senescence-associated 3-galactosidase
SDA Senescence detecting algorithm

FFPE Formalin-fixed and paraffin-embedded
GCA Giant cell arteritis

SASP Senescence-associated secretory phenotype
SCRNA Single cell ribonucleic acid sequencing

Rs Responders

NRs Non-Responders

TME Tumor microenvironment

NK Natural killer

H202 Hydrogen Peroxide

GEO Gene expression omnibus

IR Irradiation

ETO Etoposide

DMEM Dulbecco's modified eagle medium

FBS Fetal bovine serum

PBMCs Human peripheral blood mononuclear cells
RPMI Roswell park memorial institute medium
PBS Phosphate-buffered saline

ROS Reactive oxygen species

GO Gene ontology

BP Biological process

MF Molecular function

CcC Cellular component

DAVID Database for annotation, visualization and integrated discovery
FDR False discovery rate

KEGG Kyoto encyclopedia of genes and genomes
DNA Deoxyribonucleic acid

DDR DNA damage response

PCA Principal component analysis

PFA Paraformaldehyde

DMSO Dimethyl sulfoxide

RT Room temperature

19G Immunoglobulin G

H&L Heavy and light chains

ICC Immunocytochemistry

DAB 3,3’-Diaminobenzidine

T Telomere

S Signal

PCR Polymerase chain reaction

Qc Quiality control

MBG Molecular biology grade water

Alb Albumin

PNA-FISH  Peptide nucleic acid fluorescence in situ hybridization
RNase Ribonuclease

TBS Tris-buffered saline



Pantelis et al. Molecular Cancer (2025) 24:308

HCL Hydrochloric acid

SSC Saline sodium citrate

SDS Sodium dodecyl sulfate

STAR Spliced transcripts alignment to a reference

GSEA Gene set enrichment analysis

MTS 3-(4,5-Dimethylthiazol-2-yl)-5-(3- carboxymethoxyphenyl)-2-(4-
sulfophenyl)-2H-tetrazolium

TPM Transcripts per million

RECIST Response evaluation criteria in solid tumours

ROC Receiver operating characteristic

AUC Area under the curve

BOR Best overall response

FACS Fluorescence-activated cell sorting

DPBS Dulbecco'’s phosphate-buffered saline

SPSS Statistical package for social sciences

IBM International business machines

NES Normalized enrichment score

pRB Retinoblastoma protein

MAPK Mitogen-activated protein kinase

cAMP Cyclic adenosine monophosphate

ICl Immune checkpoint inhibition

UMAP Uniform manifold approximation and projection

LR Ligand-receptor

RNS Reactive nitrogen species

Supplementary Information
The online version contains supplementary material available at https://doi.or
9/10.1186/512943-025-02517-1.

Page 23 of 27

Supplementary Material 1. Fig S1: The senescence molecular signature,
SeneVick. Pipeline followed for SeneVick extraction (a), SeneVick's genes
directionality and composition (b) and how these genes are clustered

in one pie chart (left panel) and the manner in which the same genes
(right panel) are distributed across major functional categories identified
through GO enrichment and biochemical pathway analysis. (c) Genes
were grouped into representative clusters including cell cycle regulation,
DNA damage response, chromatin remodeling, inflammatory signaling,
metabolic processes, and secretory phenotype regulation. Categories were
defined based on overrepresented GO terms and curated pathway an-
notations from KEGG, Reactome, and GeneCards. The chart highlights the
relative abundance of genes involved in each biological process, reflecting
the multifaceted molecular landscape of cellular senescence. (d) Venn
diagram showing overlapping genes across SeneVick and the two most
robust senescence signatures is depicted. *The CDKN2A gene (p16™N44)

is commonly unattainable to be detected in high throughput data due to
several technical factors. Bulk RNA-seq might not capture low-expressing
transcripts and if p16™*4A transcripts are degraded into fragments, short-
read RNA-seq might fail to capture full-length sequences [93].

Supplementary Material 2. Figure S2: SeneVick efficiently detects senes-
cence across tissues and upon age. Violin Plots demonstrate significant
SeneVick enrichment in different cell types (a) and upon time (b) in aged
vs young mice (n=19 male and n=11 female, GSE132042). Two data sets
were compared with the Wilcoxon test, *P < 0.05, **P<0.01, ***P<0.001,
*¥¥¥P <0.0001

Supplementary Material 3. Figure S3: SeneVick exerts increased sensitivity
and specificity in demarcating senescent cells from non-senescent ones
compared to other senescence detecting signatures. a. Right panel: Indi-
cation of the different timepoints on UMAP plot of the scRNA data from
human fibroblasts in the GSE226225 dataset. b. UMAP plot categorizing
cells based on SeneVick, SenMayo and FridMan enrichment upon time
(days) in the GSE226225 dataset showing the scRNA data of human fibro-
blasts (GSE226225) representing the enrichment of the three signatures
upon time following treatment. c. Timepoint analysis (P<0,05) showing
the gradual enrichment of the signatures across days following etoposide
treatment from the scRNA data of GSE226225 and demonstrating the
occurring breakpoints (day 1). The enrichment levels of SeneVick (top),
SenMayo (middle) and FridMan (bottom) in human fibroblasts, in which
the induction of senescence was accomplished with different senescent

inducers (Irradiation-IR and ETO) were compared to proliferative fibro-
blasts. Significance was assessed by Wilcoxon Test, P< 2.22e-16. *P < 0.05,
**P<0.01,***P<0.001, ***P<0.0001

Supplementary Material 4. Figure S4: Workflow for the integration of
scRNA patients’data from the two melanoma studies. Schematic illustra-
tion of data preprocessing (Box 1), quality control (Box 2), normalization
(Box 3), and cell annotation for the integration of the scRNA data of the
Rs and NRs melanoma patients following immunotherapy from the
GSE115978 (n=30) and GSE120575 (n=18) datasets.

Supplementary Material 5. Figure S5: Gating strategy followed for the
identification of peripheral blood mononuclear cell (PBMC) subpopu-
lations and the assessment of GLF16+ (senescent) cells. Exclusion of
acquisition artefacts was performed by plotting events over time. Single
cells were selected by sequential gating on FSC-A/FSC-H and SSC-A/SSC-H
dot plots. Live cells were identified with BD Horizon™ Fixable Viability Stain
570.1n a CD14/CD16 plot, monocytes were gated and further classi-

fied into classical (CD14++CD16-), intermediate (CD14++CD16+), and
non-classical (CD14+CD16+4). CD14-cells were plotted in a CD3/CD19
plot to identify B-cells, further classified in a CD27/CD38 plot to plasma
cells (CD27+CD38+4), naive B-cells (CD27-CD38-) and memory B-cells
(CD274+CD38-). In the same plot, gated CD3-CD19 negative cells were
shown in a CD16/CD56 plot, and gated NK cells were further classified as
CD56bright, CD56+ and CD56dim. Finally, T/NKT cells were distinguished
in a CD56/SSC-A plot, and T-cells were further shown in a CD4/SSC-A plot
to gate CD8+ and CD4+ T-cells. Tregs were identified as CD4+CD127-CD-
25high. CD4+, CD8+ T and NKT cells were subdivided in CD27/CD28 plots.
Percentages of GLF16+ cells in CD4+ and CD8+ T-cells, NK and B-cells are
shown as inserts

Supplementary Material 6. Figure Sé: GLF16+ (senescent) cell % percent-
ages of immune subsets of Rs and NRs melanoma patients. a. Workflow
depicting cellular senescence assessment in circulating CD4+ and CD8+
T-cells and B-cells (CD19+/CD20+) from melanoma patients by applying
the senescence detecting algorithm (SDA). b-c. Representative dot plots
from 4 melanoma patients, showing the percentages of GLF16+ cells (in
insets) in CD4+ and CD8+ T-cells, and B-cells (CD19+/CD20+) isolated
from two Rs (Responder 1 and 2) (b) and two NRs (Non-Responder 1 and
2) (0). Human and vessel icons were provided by Servier Medical Art (https
.//smart.serviercom/), licensed under CC BY 4.0 (https://creativecommons
.org/licenses/by/4.0/)"

Supplementary Material 7. Figure S7: Serial section analysis reveals
increased immune cell senescence in the TME of NRs compared to Rs to
immunotherapy. Representative images of serial section analysis in mela-
noma lesions stained with the senescence detecting reagent GL13 and
markers for CD4+ and CD8+ T-cells, and B-cells. Rs (upper panel) depict
lower senescence in CD4, CD8 and CD20 cells within the TME compared
to NRs (lower panel: insets and red arrows) Objective 10x (1° and 3 line),
40% (2" and 4™). Scale bars: 30 pm and 60 um, respectively. Cell icons
were provided by Servier Medical Art (https://smart.servier.com/), licensed
under CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/)"

Supplementary Material 8. Figure S8: Ligand-Receptor interactions among
the secreting and recipient cells of Rs and NRs patients. a. Left column: Pie
charts illustrating the secreting cells for each ligand receptor interaction of
Rs patients which promote effective immune responses that are absent in
NRs patients. Middle column: Pie charts depicting the recipient cells with
their receptor for each ligand receptor interaction of Rs which promote
effective immune responses that are absent in NRs patients. Right column:
The result of each ligand receptor interaction between the secreting and
the recipient cells and the immune function that is being regulated. b. Left
column: Pie charts illustrating the secreting cells for each ligand receptor
interaction of NRs patients which promote ineffective immune responses
that are absent in Rs patients. Middle column: Pie charts depicting the
recipient cells with their receptor for each ligand receptor interaction

of NRs which promote ineffective immune responses that are absent in

Rs patients. Right column: The result of each ligand receptor interaction
between the secreting and the recipient cells and the immune function
that is being deregulated
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Supplementary file 9. Figure S9: Overview of cancer driven mechanisms
inducing immune cell senescence in the TME. Schematic illustration of pu-
tative mechanisms involved in cancer promoted immune cell senescence
in the tumor microenvironment. Due to cancer cell’s accelerated growth
and metabolism the TME is characterized by hypoxia, high levels of reac-
tive oxygen (ROS) and nitrogen (RNS) species and lipids that solely or in
concert induce DNA damage response, eventually triggering immune cell
senescence [94]. Interestingly, tumor cells have been reported to induce
senescence in T-cells by c-AMP delivery or by transferring mitochondria
with mtDNA mutations [95, 96]. Moreover, tumor-derived immunoglob-
ulin-like transcript 4 (ILT4), an inhibitory molecule of the immunoglobulin
superfamily, has been shown to induce T-cell senescence via activation of
ERK1/2 MAPK signaling [97]. Tumor-associated Tregs can also induce T-cell
senescence in responding naive/effector T-cells, by promoting mitochon-
drial disruption and p38/ERK1/2 MAPK signaling activation as well as via
increased glucose consumption and metabolic competition [98].
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